CIESC Journal ›› 2025, Vol. 76 ›› Issue (11): 5574-5583.DOI: 10.11949/0438-1157.20250452
• Special Column: Multiphase Flow and Heat Transfer in Energy Utilization Processes • Previous Articles Next Articles
Xiaoqing ZHANG1(
), Xiao MA2(
), Shijin SHUAI1
Received:2025-04-28
Revised:2025-05-26
Online:2025-12-19
Published:2025-11-25
Contact:
Xiao MA
通讯作者:
马骁
作者简介:张晓卿(1996—),男,博士,zhangxq2023@mail.tsinghua.edu.cn
基金资助:CLC Number:
Xiaoqing ZHANG, Xiao MA, Shijin SHUAI. Study on influence of two-phase flow in channels considering surface wettability of gas diffusion layers on fuel cell performance[J]. CIESC Journal, 2025, 76(11): 5574-5583.
张晓卿, 马骁, 帅石金. 考虑扩散层表面润湿性的流道内两相流对燃料电池性能影响研究[J]. 化工学报, 2025, 76(11): 5574-5583.
Add to citation manager EndNote|Ris|BibTeX
| 参数 | 数值 |
|---|---|
| 流道长度/mm | 50 |
| 流道高度/mm | 0.5 |
| 厚度(GDL、CL、MEM)/mm | 0.2、0.01、0.0254 |
| 接触角(GDL、CL)/(°) | 100~160、100 |
| 渗透率(GDL、CL)/m2 | 1.0×10-12、2.0×10-20 |
| 空气流速/(m/s) | 1 |
| 工作压力/atm | 1.5 |
| 工作温度/K | 353.15 |
Table 1 Main physical parameters and operating conditions
| 参数 | 数值 |
|---|---|
| 流道长度/mm | 50 |
| 流道高度/mm | 0.5 |
| 厚度(GDL、CL、MEM)/mm | 0.2、0.01、0.0254 |
| 接触角(GDL、CL)/(°) | 100~160、100 |
| 渗透率(GDL、CL)/m2 | 1.0×10-12、2.0×10-20 |
| 空气流速/(m/s) | 1 |
| 工作压力/atm | 1.5 |
| 工作温度/K | 353.15 |
| 名称 | 方程 |
|---|---|
| 质量守恒 | |
| 动量守恒 | |
| 相守恒 | |
| 表面张力源项 | |
| 表面曲率 |
Table 2 Volume of fluid model
| 名称 | 方程 |
|---|---|
| 质量守恒 | |
| 动量守恒 | |
| 相守恒 | |
| 表面张力源项 | |
| 表面曲率 |
| 名称 | 方程 |
|---|---|
| 质量守恒 | |
| 动量守恒 | |
| 气相组分守恒 | |
| 液态水守恒 | |
| 膜态水守恒 | |
| 电子守恒 | |
| 离子守恒 |
Table 3 Conservation equations
| 名称 | 方程 |
|---|---|
| 质量守恒 | |
| 动量守恒 | |
| 气相组分守恒 | |
| 液态水守恒 | |
| 膜态水守恒 | |
| 电子守恒 | |
| 离子守恒 |
| 源项 | 单位 |
|---|---|
| kg/(m3·s) | |
| kg/(m2·s) | |
| kg/(m3·s) | |
| kg/(m3·s) | |
| kg/(m3·s) | |
| kg/(m3·s) | |
| kg/(m3·s) | |
| kg/(m3·s) | |
| mol/(m3·s) | |
| A/m3 | |
| A/m3 |
Table 4 Source terms
| 源项 | 单位 |
|---|---|
| kg/(m3·s) | |
| kg/(m2·s) | |
| kg/(m3·s) | |
| kg/(m3·s) | |
| kg/(m3·s) | |
| kg/(m3·s) | |
| kg/(m3·s) | |
| kg/(m3·s) | |
| mol/(m3·s) | |
| A/m3 | |
| A/m3 |
| [1] | Zhang X Q, Ma X, Zhang Z H, et al. Review and analysis of thermal management for proton exchange membrane fuel cell hybrid power system[J]. Renewable Energy, 2025, 244: 122716. |
| [2] | Jiao K, Xuan J, Du Q, et al. Designing the next generation of proton-exchange membrane fuel cells[J]. Nature, 2021, 595(7867): 361-369. |
| [3] | Liu H, Chen J, Hissel D, et al. Prognostics methods and degradation indexes of proton exchange membrane fuel cells: a review[J]. Renewable and Sustainable Energy Reviews, 2020, 123: 109721. |
| [4] | Liu L N, Guo L Y, Zhang R Y, et al. Numerically investigating two-phase reactive transport in multiple gas channels of proton exchange membrane fuel cells[J]. Applied Energy, 2021, 302: 117625. |
| [5] | Wang Y, Ruiz Diaz D F, Chen K S, et al. Materials, technological status, and fundamentals of PEM fuel cells—a review[J]. Materials Today, 2020, 32: 178-203. |
| [6] | Xiong K N, Wu W, Wang S F, et al. Modeling, design, materials and fabrication of bipolar plates for proton exchange membrane fuel cell: a review[J]. Applied Energy, 2021, 301: 117443. |
| [7] | Xu S N, Liao P Y, Yang D J, et al. Liquid water transport in gas flow channels of PEMFCs: a review on numerical simulations and visualization experiments[J]. International Journal of Hydrogen Energy, 2023, 48(27): 10118-10143. |
| [8] | Zhou Y L, Chang H, Qi T Y. Gas-liquid two-phase flow in serpentine microchannel with different wall wettability[J]. Chinese Journal of Chemical Engineering, 2017, 25(7): 874-881. |
| [9] | Zhang X Q, Ma X, Shuai S J. Impact of detailed liquid water transport in channel on mass transfer and performance of proton exchange membrane fuel cell[J]. International Communications in Heat and Mass Transfer, 2025, 162: 108515. |
| [10] | Bazylak A. Liquid water visualization in PEM fuel cells: a review[J]. International Journal of Hydrogen Energy, 2009, 34(9): 3845-3857. |
| [11] | Ferreira R B, Falcão D S, Oliveira V B, et al. Numerical simulations of two-phase flow in proton exchange membrane fuel cells using the volume of fluid method—a review[J]. Journal of Power Sources, 2015, 277: 329-342. |
| [12] | Li M J, Zhang E R, Zhang M F, et al. Ex-situ experimental study on extraction of droplet dynamic parameters based on droplet shape in PEMFC[J]. International Journal of Green Energy, 2025, 22(5): 858-865. |
| [13] | Xu Y F, Peng L F, Yi P Y, et al. Numerical investigation of liquid water dynamics in wave-like gas channels of PEMFCs[J]. International Journal of Energy Research, 2019, 43(3): 1191-1202. |
| [14] | Qiu D, Xu Z, Shao H, et al. Analytical modelling of water droplet behavior at the gas channel corner for proton exchange membrane fuel cells[J]. Journal of Electrochemical Energy Conversion and Storage, 2025, 22(1): 011001. |
| [15] | Chen J X, Bao Z M, Xu Y F, et al. Investigation of liquid retention behavior in the flow field plate of large-size proton exchange membrane fuel cells: effects of sub-distribution zone[J]. Applied Energy, 2024, 358: 122651. |
| [16] | Zhang X Q, Yang J P, Ma X, et al. Numerical investigation of water dynamics in a novel wettability gradient anode flow channel for proton exchange membrane fuel cells[J]. International Journal of Energy Research, 2020, 44(13): 10282-10294. |
| [17] | Ding Y L, Bi X T, Wilkinson D P. 3D simulations of the impact of two-phase flow on PEM fuel cell performance[J]. Chemical Engineering Science, 2013, 100: 445-455. |
| [18] | Zhang G B, Wu L Z, Qin Z K, et al. A comprehensive three-dimensional model coupling channel multi-phase flow and electrochemical reactions in proton exchange membrane fuel cell[J]. Advances in Applied Energy, 2021, 2: 100033. |
| [19] | Zhang X Q, Ma X, Qin Y Z, et al. Modeling research of the impact of liquid water in channel on gas and water transport in proton exchange membrane fuel cell[J]. International Journal of Heat and Mass Transfer, 2024, 235: 126127. |
| [20] | Penga Ž, Bergbreiter C, Barbir F, et al. Numerical and experimental analysis of liquid water distribution in PEM fuel cells[J]. Energy Conversion and Management, 2019, 189: 167-183. |
| [21] | Ding Y J, Xu L F, Zheng W B, et al. Characterizing the two-phase flow effect in gas channel of proton exchange membrane fuel cell with dimensionless number[J]. International Journal of Hydrogen Energy, 2023, 48(13): 5250-5265. |
| [22] | Chen H, Guo H, Ye F, et al. Improving two-phase mass transportation under non-Darcy flow effect in orientated-type flow channels of proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2021, 46(41): 21600-21618. |
| [23] | Ding Y, Bi X T, Wilkinson D P. Numerical investigation of the impact of two-phase flow maldistribution on PEM fuel cell performance[J]. International Journal of Hydrogen Energy, 2014, 39(1): 469-480. |
| [24] | Ferreira R B, Falcão D S, Oliveira V B, et al. 1D+3D two-phase flow numerical model of a proton exchange membrane fuel cell[J]. Applied Energy, 2017, 203: 474-495. |
| [25] | Le A D, Zhou B. A generalized numerical model for liquid water in a proton exchange membrane fuel cell with interdigitated design[J]. Journal of Power Sources, 2009, 193(2): 665-683. |
| [26] | Zhang X Q, Ma X, Yang J P, et al. Effect of liquid water in flow channel on proton exchange membrane fuel cell: focusing on flow pattern[J]. Energy Conversion and Management, 2022, 258: 115528. |
| [27] | Liu H C, Tan J, Cheng L S, et al. Enhanced water removal performance of a slope turn in the serpentine flow channel for proton exchange membrane fuel cells[J]. Energy Conversion and Management, 2018, 176: 227-235. |
| [28] | Zhang G B, Qu Z G, Tao W Q, et al. Porous flow field for next-generation proton exchange membrane fuel cells: materials, characterization, design, and challenges[J]. Chemical Reviews, 2023, 123(3): 989-1039. |
| [29] | Ma X, Zhang X Q, Yang J P, et al. Impact of gas diffusion layer spatial variation properties on water management and performance of PEM fuel cells[J]. Energy Conversion and Management, 2021, 227: 113579. |
| [30] | Jiao K, Li X G. Water transport in polymer electrolyte membrane fuel cells[J]. Progress in Energy and Combustion Science, 2011, 37(3): 221-291. |
| [31] | Theodorakakos A, Ous T, Gavaises M, et al. Dynamics of water droplets detached from porous surfaces of relevance to PEM fuel cells[J]. Journal of Colloid and Interface Science, 2006, 300(2): 673-687. |
| [1] | Qingtai CAO, Songyuan GUO, Jianqiang LI, Zan JIANG, Bin WANG, Rui ZHUAN, Jingyi WU, Guang YANG. Numerical study on influence of perforated plate on retention performance of liquid oxygen tank under negative gravity [J]. CIESC Journal, 2025, 76(S1): 217-229. |
| [2] | Junlong KONG, Yang BI, Yao ZHAO, Yanjun DAI. Simulation experiment on direct cooling thermal management system for energy storage batteries [J]. CIESC Journal, 2025, 76(S1): 289-296. |
| [3] | Congqi HUANG, Shuangquan SHAO. Research on characteristics of compression-absorption refrigeration system driven by waste heat in liquid-cooled data center [J]. CIESC Journal, 2025, 76(S1): 326-335. |
| [4] | Tengfei ZHU, Ye LIU. Performance analysis of low GWP refrigerant used in new energy vehicle air conditioning [J]. CIESC Journal, 2025, 76(S1): 343-350. |
| [5] | Senqing ZHUO, Hua CHEN, Wei CHEN, Bin SHANG, Hengheng LIU, Tangtang GU, Wei BAI, Longyan WANG, Haomin CAO, Guoliang DING. Model development and software implementation for predicting APF of multi-split air conditioning system [J]. CIESC Journal, 2025, 76(S1): 370-376. |
| [6] | Haolei DUAN, Haoyuan CHEN, Kunfeng LIANG, Lin WANG, Bin CHEN, Yong CAO, Chenguang ZHANG, Shuopeng LI, Dengyu ZHU, Yaru HE, Dapeng YANG. Performance analysis and comprehensive evaluation of thermal management system schemes with low GWP refrigerants [J]. CIESC Journal, 2025, 76(S1): 54-61. |
| [7] | Songyuan GUO, Xiaoqing ZHOU, Wubing MIAO, Bin WANG, Rui ZHUAN, Qingtai CAO, Chengcheng CHEN, Guang YANG, Jingyi WU. Numerical study on characteristics of pressurized discharge in liquid oxygen tank equipped with porous plate in the ascent period of rocket [J]. CIESC Journal, 2025, 76(S1): 62-74. |
| [8] | Yiyang LIU, Zhixiang XING, Yecheng LIU, Ming PENG, Yuyang LI, Yunhao LI, Ningzhou SHEN. Numerical simulation study on the leakage diffusion characteristics and safety monitoring of liquid hydrogen in hydrogen refueling stations [J]. CIESC Journal, 2025, 76(9): 4694-4708. |
| [9] | Binyi ZHANG, Shaodong SUN, Qian YAO, Wenhe CAI, Huiyu ZHANG, Chengxin LI. Study on hybrid system of coal-to-methanol coupled solid oxide fuel cell [J]. CIESC Journal, 2025, 76(9): 4658-4669. |
| [10] | Sheng CHEN, Zizheng LI, Chao MIAO, Xuegang BAI, Fei LI, Jiaxuan LIU, Tiantian LI, Shuang YANG, Rongrong LYU, Jiangyun WANG. Three-dimensional CFD simulation of non-uniform diffusion characteristic of high-risk chlorine gas in large-scale dense scene [J]. CIESC Journal, 2025, 76(9): 4630-4643. |
| [11] | Zhiyong JIA, Xiankun SHEN, Xiaocheng LAN, Tiefeng WANG. CFD-DEM simulation of effects of gas density on pressurized fluidization [J]. CIESC Journal, 2025, 76(9): 4383-4397. |
| [12] | Qinqin XIE, Junqi WENG, Zhenli LIN, Guanghua YE, Xinggui ZHOU. Effects of industrial catalyst structure on methanol to aromatics in a packed bed reactor [J]. CIESC Journal, 2025, 76(9): 4487-4498. |
| [13] | Yongli MA, Shu AN, Jie YANG, Mingyan LIU. A review on direct numerical simulation of gas-liquid-solid fluidized bed [J]. CIESC Journal, 2025, 76(8): 3772-3788. |
| [14] | Mengjiao WANG, Kaixue HU, Xiangkai MENG, Jinbo JIANG, Xudong PENG. Influence of micro-texture size and areal density on surface of silicon carbide on tribological properties of sliding sealing surfaces [J]. CIESC Journal, 2025, 76(8): 4165-4176. |
| [15] | Qidong ZHANG, Liqiang AI, Yuan MA, Shengbao WU, Lei WANG, Yanzhong LI. Research on two-phase flow and heat transfer characteristics in precooling process of low-temperature pipelines based on one-dimensional drift-flux model [J]. CIESC Journal, 2025, 76(8): 3842-3852. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||