CIESC Journal ›› 2025, Vol. 76 ›› Issue (S1): 370-376.DOI: 10.11949/0438-1157.20241177
• Energy and environmental engineering • Previous Articles
Senqing ZHUO1(
), Hua CHEN1, Wei CHEN1, Bin SHANG1, Hengheng LIU1, Tangtang GU1, Wei BAI1, Longyan WANG2, Haomin CAO2, Guoliang DING2(
)
Received:2024-10-23
Revised:2022-10-25
Online:2025-06-26
Published:2025-06-25
Contact:
Guoliang DING
卓森庆1(
), 陈华1, 陈伟1, 尚彬1, 刘恒恒1, 古汤汤1, 白韡1, 王龙炎2, 曹昊敏2, 丁国良2(
)
通讯作者:
丁国良
作者简介:卓森庆(1980—),男,硕士,工程师,zhuosenqing@mail.aux-home.com
基金资助:CLC Number:
Senqing ZHUO, Hua CHEN, Wei CHEN, Bin SHANG, Hengheng LIU, Tangtang GU, Wei BAI, Longyan WANG, Haomin CAO, Guoliang DING. Model development and software implementation for predicting APF of multi-split air conditioning system[J]. CIESC Journal, 2025, 76(S1): 370-376.
卓森庆, 陈华, 陈伟, 尚彬, 刘恒恒, 古汤汤, 白韡, 王龙炎, 曹昊敏, 丁国良. 多联式空调系统APF性能仿真的模型开发与软件实现[J]. 化工学报, 2025, 76(S1): 370-376.
Add to citation manager EndNote|Ris|BibTeX
| 部件 | 模型类型 | 公式 |
|---|---|---|
| 变频压缩机 | 半经验模型[ | 制冷剂流量: |
| 输入功率: | ||
| 电子膨胀阀 | 半经验模型[ | 制冷剂流量: |
| 换热器 | 分相模型[ | 传热: |
| 压降: | ||
| 制冷剂质量: | ||
| 连接管 | 关联式[ | 单相流动: |
| 两相流动: | ||
| 制冷剂质量: |
Table 1 Multi-split air conditioner component model
| 部件 | 模型类型 | 公式 |
|---|---|---|
| 变频压缩机 | 半经验模型[ | 制冷剂流量: |
| 输入功率: | ||
| 电子膨胀阀 | 半经验模型[ | 制冷剂流量: |
| 换热器 | 分相模型[ | 传热: |
| 压降: | ||
| 制冷剂质量: | ||
| 连接管 | 关联式[ | 单相流动: |
| 两相流动: | ||
| 制冷剂质量: |
| 工况 | 额定制冷 | 中间制冷 | 最小制冷 | 额定制热 | 中间制热 | 最小制热 | 低温制热 | |
|---|---|---|---|---|---|---|---|---|
| 室外侧控制参数 | 压缩机频率/Hz | 68 | 25 | 15 | 77 | 41 | 22 | 92 |
| 空气干球/湿球温度/℃ | 35/24 | 35/24 | 35/24 | 7/6 | 7/6 | 7/6 | 2/1 | |
| 风机转速/(r/mim) | 900 | 705 | 495 | 900 | 645 | 600 | 900 | |
| 电子膨胀阀开度 | 480 | 480 | 480 | 155 | 90 | 75 | 142 | |
| 室内侧控制参数 | 空气干球/湿球温度/℃ | 27/19 | 27/19 | 27/19 | 20/15 | 20/15 | 20/15 | 20/15 |
| 风量/(m3/h) | 4491 | 4443 | 3066 | 3613 | 3971 | 4038 | 2958 | |
| 电子膨胀阀#1开度 | 99 | 60 | 60 | 480 | 480 | 480 | 401 | |
| 电子膨胀阀#2开度 | 112 | 60 | 60 | 480 | 480 | 480 | 408 | |
| 电子膨胀阀#3开度 | 110 | 60 | 60 | 480 | 480 | 480 | 427 | |
| 电子膨胀阀#4开度 | 159 | 60 | 0 | 480 | 480 | 70 | 419 | |
Table 2 APF test control parameters for each operating condition
| 工况 | 额定制冷 | 中间制冷 | 最小制冷 | 额定制热 | 中间制热 | 最小制热 | 低温制热 | |
|---|---|---|---|---|---|---|---|---|
| 室外侧控制参数 | 压缩机频率/Hz | 68 | 25 | 15 | 77 | 41 | 22 | 92 |
| 空气干球/湿球温度/℃ | 35/24 | 35/24 | 35/24 | 7/6 | 7/6 | 7/6 | 2/1 | |
| 风机转速/(r/mim) | 900 | 705 | 495 | 900 | 645 | 600 | 900 | |
| 电子膨胀阀开度 | 480 | 480 | 480 | 155 | 90 | 75 | 142 | |
| 室内侧控制参数 | 空气干球/湿球温度/℃ | 27/19 | 27/19 | 27/19 | 20/15 | 20/15 | 20/15 | 20/15 |
| 风量/(m3/h) | 4491 | 4443 | 3066 | 3613 | 3971 | 4038 | 2958 | |
| 电子膨胀阀#1开度 | 99 | 60 | 60 | 480 | 480 | 480 | 401 | |
| 电子膨胀阀#2开度 | 112 | 60 | 60 | 480 | 480 | 480 | 408 | |
| 电子膨胀阀#3开度 | 110 | 60 | 60 | 480 | 480 | 480 | 427 | |
| 电子膨胀阀#4开度 | 159 | 60 | 0 | 480 | 480 | 70 | 419 | |
| 标准制冷工况 | 参数 | 额定制冷 | 中间制冷 | 最小制冷 | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| 实验值 | 仿真值 | 误差 | 实验值 | 仿真值 | 误差 | 实验值 | 仿真值 | 误差 | ||
| 制冷量/W | 15931 | 16160 | 1.44% | 7637 | 7895 | 3.38% | 5660 | 5793 | 2.34% | |
| 功率/W | 4493 | 4563 | 1.56% | 1503 | 1597 | 6.25% | 1222 | 1271 | 4.02% | |
| 标准制热工况 | 参数 | 额定制热 | 中间制热 | 最小制热 | ||||||
| 实验值 | 仿真值 | 误差 | 实验值 | 仿真值 | 误差 | 实验值 | 仿真值 | 误差 | ||
| 制热量/W | 17353 | 17669 | 1.82% | 8925 | 8665 | -2.91% | 6081 | 6213 | 2.17% | |
| 功率/W | 4905 | 4834 | -1.44% | 2016 | 1909 | -5.30% | 1286 | 1237 | -3.81% | |
Table 3 Comparison of system performance for standard cooling and standard heating conditions
| 标准制冷工况 | 参数 | 额定制冷 | 中间制冷 | 最小制冷 | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| 实验值 | 仿真值 | 误差 | 实验值 | 仿真值 | 误差 | 实验值 | 仿真值 | 误差 | ||
| 制冷量/W | 15931 | 16160 | 1.44% | 7637 | 7895 | 3.38% | 5660 | 5793 | 2.34% | |
| 功率/W | 4493 | 4563 | 1.56% | 1503 | 1597 | 6.25% | 1222 | 1271 | 4.02% | |
| 标准制热工况 | 参数 | 额定制热 | 中间制热 | 最小制热 | ||||||
| 实验值 | 仿真值 | 误差 | 实验值 | 仿真值 | 误差 | 实验值 | 仿真值 | 误差 | ||
| 制热量/W | 17353 | 17669 | 1.82% | 8925 | 8665 | -2.91% | 6081 | 6213 | 2.17% | |
| 功率/W | 4905 | 4834 | -1.44% | 2016 | 1909 | -5.30% | 1286 | 1237 | -3.81% | |
| 参数 | 低温制热最大值 | 低温制热周期平均值 | |||
|---|---|---|---|---|---|
| 实验值 | 仿真值 | 实验值 | 修正后 | 误差 | |
| 制热量/W | 19171 | 18688 | 13780 | 13433 | -2.52% |
| 功率/W | 6557 | 6690 | 5384 | 5493 | 2.03% |
Table 4 Comparison of system performance for low temperature heating conditions
| 参数 | 低温制热最大值 | 低温制热周期平均值 | |||
|---|---|---|---|---|---|
| 实验值 | 仿真值 | 实验值 | 修正后 | 误差 | |
| 制热量/W | 19171 | 18688 | 13780 | 13433 | -2.52% |
| 功率/W | 6557 | 6690 | 5384 | 5493 | 2.03% |
| 参数 | 标准制冷 | 标准制热 | 低温制热 (周期平均) | APF | ||||
|---|---|---|---|---|---|---|---|---|
| 额定制冷 | 中间制冷 | 最小制冷 | 额定制热 | 中间制热 | 最小制热 | |||
| 误差 | -0.12% | -2.70% | -1.61% | 3.31% | 2.52% | 6.22% | -4.46% | -1.64% |
| 能效实验值 | 3.55 | 5.08 | 4.63 | 3.54 | 4.43 | 4.73 | 2.56 | 4.26 |
| 能效仿真值 | 3.54 | 4.94 | 4.56 | 3.66 | 4.54 | 5.02 | 2.45 | 4.19 |
Table 5 Comparison of system energy efficiency simulation results and experimental values
| 参数 | 标准制冷 | 标准制热 | 低温制热 (周期平均) | APF | ||||
|---|---|---|---|---|---|---|---|---|
| 额定制冷 | 中间制冷 | 最小制冷 | 额定制热 | 中间制热 | 最小制热 | |||
| 误差 | -0.12% | -2.70% | -1.61% | 3.31% | 2.52% | 6.22% | -4.46% | -1.64% |
| 能效实验值 | 3.55 | 5.08 | 4.63 | 3.54 | 4.43 | 4.73 | 2.56 | 4.26 |
| 能效仿真值 | 3.54 | 4.94 | 4.56 | 3.66 | 4.54 | 5.02 | 2.45 | 4.19 |
| 1 | 肖寒松, 张国辉, 石文星, 等. 多联机控制技术进展与展望[J]. 制冷与空调, 2019, 19(11): 69-79. |
| Xiao H S, Zhang G H, Shi W X, et al. Progress and prospects of the control technology for multi-split air conditioner[J]. Refrigeration and Air-Conditioning, 2019, 19(11): 69-79. | |
| 2 | 廖瑞海. 某办公建筑多联机空调系统能耗调查与分析[J]. 暖通空调, 2012, 42(4): 26-30. |
| Liao R H. Energy consumption investigation and analysis of multi-connected split air conditioning system in an office building[J]. Heating Ventilating & Air Conditioning, 2012, 42(4): 26-30. | |
| 3 | 赵德印. 多联式空调(热泵)机组APF能效标准分析[J]. 制冷与空调, 2017, 17(10): 1-7. |
| Zhao D Y. Analysis on energy efficiency standards for APF of multi-split air-condition (heat pump) unit[J]. Refrigeration and Air-Conditioning, 2017, 17(10): 1-7. | |
| 4 | 顾超, 毛守博, 倪双全, 等. 多联机APF的提升方法研究[J]. 家电科技, 2023(S1): 20-24. |
| Gu C, Mao S B, Ni S Q, et al. Research on methods for improving APF of VRF[J]. Journal of Appliance Science & Technology, 2023(S1): 20-24. | |
| 5 | 林铖志. 多联式空调(热泵)机组国家标准的变化与分析[J]. 制冷与空调, 2017, 17(5): 32-36, 43. |
| Lin C Z. Changes and analysis of national standard of multi-connected air-condition (heat pump) unit[J]. Refrigeration and Air-Conditioning, 2017, 17(5): 32-36, 43. | |
| 6 | 丁国良, 张春路. 制冷空调装置仿真与优化[M]. 北京: 科学出版社, 2001. |
| Ding G L, Zhang C L. Simulation and Optimization of Refrigeration and Air Conditioning Device[M]. Beijing: Science Press, 2001. | |
| 7 | 邵双全, 高玉平, 陈刚, 等. 基于计算机仿真的多联式空调系统控制策略优化设计[J]. 制冷技术, 2015, 35(1): 17-20. |
| Shao S Q, Gao Y P, Chen G, et al. Optimization design of control strategy for multi-connected air conditioning system based on computer simulation[J]. Chinese Journal of Refrigeration Technology, 2015, 35(1): 17-20. | |
| 8 | 邵双全. 复杂管网制冷系统仿真研究[D]. 北京: 清华大学, 2005. |
| Shao S Q. Simulation of complex refrigerant system[D]. Beijing: Tsinghua University, 2005. | |
| 9 | Sun H R, Ding G L, Hu H T, et al. A general simulation model for variable refrigerant flow multi-split air conditioning system based on graph theory[J]. International Journal of Refrigeration, 2017, 82: 22-35. |
| 10 | Winkler J, Aute V, Radermacher R. Comprehensive investigation of numerical methods in simulating a steady-state vapor compression system[J]. International Journal of Refrigeration, 2008, 31(5): 930-942. |
| 11 | 鲁红亮, 陈焕新, 谢军龙, 等. 多联机室内机制冷剂管网流量分配仿真模型[J]. 系统仿真学报, 2009, 21(22): 7057-7060, 7065. |
| Lu H L, Chen H X, Xie J L, et al. Simulated model for refrigerant flow distributary of MAU indoor pipe network[J]. Journal of System Simulation, 2009, 21(22): 7057-7060, 7065. | |
| 12 | 陈武, 蔡振雄, 周兴禧. 一拖三变频空调系统建模方法及控制研究[J]. 系统仿真学报, 2004, 16(10): 2123-2127. |
| Chen W, Cai Z X, Zhou X X. Modeling and control research of the triple-evaporator air-conditioner with inverter[J]. Journal of System Simulation, 2004, 16(10): 2123-2127. | |
| 13 | Park Y C, Kim Y C, Min M K. Performance analysis on a multi-type inverter air conditioner[J]. Energy Conversion and Management, 2001, 42(13): 1607-1621. |
| 14 | 章陈春. 多联式空调(热泵)系统变工况性能仿真研究[D]. 西安: 西安建筑科技大学, 2017. |
| Zhang C C. Simulation study on performance of multi-split air conditioning (heat pump) system[D]. Xi'an: Xi'an University of Architecture and Technology, 2017. | |
| 15 | 王龙炎, 曹昊敏, 丁国良, 等. 热泵型多联式空调系统稳态仿真[J]. 暖通空调, 2024, 54(9): 25-33. |
| Wang L Y, Cao H M, Ding G L, et al. Steady state simulation of heat pump type multi-connected air conditioning systems[J]. Heating Ventilating & Air Conditioning, 2024, 54(9): 25-33. | |
| 16 | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 多联式空调(热泵)机组: [S]. 北京: 中国标准出版社, 2015. |
| General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, China National Standardization Administration. Multi-connected air-condition (heat pump) uint: [S]. Beijing: Standards Press of China, 2015. | |
| 17 | 孙浩然, 任滔, 丁国良, 等. 一种产品数据交互式的变频压缩机理论模型[J]. 制冷学报, 2015, 36(3): 73-78. |
| Sun H R, Ren T, Ding G L, et al. A product-data interactive theoretical model of variable-speed compressor[J]. Journal of Refrigeration, 2015, 36(3): 73-78. | |
| 18 | Park C, Cho H, Lee Y, et al. Mass flow characteristics and empirical modeling of R22 and R410A flowing through electronic expansion valves[J]. International Journal of Refrigeration, 2007, 30(8): 1401-1407. |
| 19 | Ge Y T, Cropper R. Performance evaluations of air-cooled condensers using pure and mixture refrigerants by four-section lumped modelling methods[J]. Applied Thermal Engineering, 2005, 25(10): 1549-1564. |
| 20 | Müller-Steinhagen H, Heck K. A simple friction pressure drop correlation for two-phase flow in pipes[J]. Chemical Engineering and Processing: Process Intensification, 1986, 20(6): 297-308. |
| 21 | 孙浩然. 基于图论的变频多联式空调系统模型开发及软件实现[D]. 上海: 上海交通大学, 2017. |
| Sun H R. Graph based system modeling and software implementation for variable refrigerant volume air conditioners[D]. Shanghai: Shanghai Jiao Tong University, 2017. | |
| 22 | 张恒, 高永坤, 孟建军, 等. 影响多联机APF的关键要素研究[J]. 制冷学报, 2022, 43(4): 103-112. |
| Zhang H, Gao Y K, Meng J J, et al. Key factors for APF in VRF systems[J]. Journal of Refrigeration, 2022, 43(4): 103-112. |
| [1] | Zongting WANG, Lili WANG, Xiaoyan SUN, Li XIA, Shaohui TAO, Shuguang XIANG. Simplified phase equilibrium correlation-based efficient and short-cut distillation column model [J]. CIESC Journal, 2025, 76(3): 1133-1142. |
| [2] | Yiru WEN, Jia FU, Dahuan LIU. Advances in machine learning-based materials research for MOFs: energy gas adsorption separation [J]. CIESC Journal, 2024, 75(4): 1370-1381. |
| [3] | Xiaoxiong FAN, Lifang HAO, Chuigang FAN, Songgeng LI. Study on the catalytic denitrification performance of low-temperature NH3-SCR over LaMnO3/biochar catalyst [J]. CIESC Journal, 2023, 74(9): 3821-3830. |
| [4] | Yuanchao LIU, Bin GUAN, Jianbin ZHONG, Yifan XU, Xuhao JIANG, Duan LI. Investigation of thermoelectric transport properties of single-layer XSe2 (X=Zr/Hf) [J]. CIESC Journal, 2023, 74(9): 3968-3978. |
| [5] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
| [6] | Zhaolun WEN, Peirui LI, Zhonglin ZHANG, Xiao DU, Qiwang HOU, Yegang LIU, Xiaogang HAO, Guoqing GUAN. Design and optimization of cryogenic air separation process with dividing wall column based on self-heat regeneration [J]. CIESC Journal, 2023, 74(7): 2988-2998. |
| [7] | Yuanzhe SHAO, Zhonggai ZHAO, Fei LIU. Quality-related non-stationary process fault detection method by common trends model [J]. CIESC Journal, 2023, 74(6): 2522-2537. |
| [8] | Shanghao LIU, Shengkun JIA, Yiqing LUO, Xigang YUAN. Optimization of ternary-distillation sequence based on gradient boosting decision tree [J]. CIESC Journal, 2023, 74(5): 2075-2087. |
| [9] | Zhewen CHEN, Junjie WEI, Yuming ZHANG, Wei ZHANG, Jiazhou LI. Thermodynamic analysis of CO2 near-zero-emission power system with integrated solar energy, supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(11): 4688-4701. |
| [10] | Rong MA, Qiao ZHANG. Establishment and simulation of hydrogen separation system coupled with PSA, rectisol and membrane separation [J]. CIESC Journal, 2023, 74(10): 4201-4207. |
| [11] | Lei ZHANG, Xiaohui SONG, Jianting ZHANG, Meiling TU, Asan YANG. Reaction kinetics study of tranexamic acid isomerization process [J]. CIESC Journal, 2023, 74(10): 4173-4181. |
| [12] | Nini YUAN, Tuo GUO, Hongcun BAI, Yurong HE, Yongning YUAN, Jingjing MA, Qingjie GUO. Reaction process of CH4 on the surface of Fe2O3/Al2O3 oxygen carrier in chemical looping combustion: ReaxFF-MD simulation [J]. CIESC Journal, 2022, 73(9): 4054-4061. |
| [13] | Qiwang HOU, Zhaolun WEN, Zhonglin ZHANG, Yegang LIU, Jingxuan YANG, Dongliang CHEN, Xiaogang HAO, Guoqing GUAN. Design and evaluation of a coal-based polygeneration system with carbon cycle [J]. CIESC Journal, 2022, 73(5): 2073-2082. |
| [14] | Weiwei LIU, Guomin CUI, Lu ZHANG, Yuan XIAO, Qiguo YANG, Guanhua ZHANG. Damping optimization method for heat exchange network synthesis [J]. CIESC Journal, 2022, 73(5): 2060-2072. |
| [15] | Xu LIU, Songlin XU, Yanfei WANG. Global multi-objective optimization of trimethyl orthoformate-acetic acid extractive distillation [J]. CIESC Journal, 2022, 73(10): 4518-4526. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||