CIESC Journal ›› 2025, Vol. 76 ›› Issue (9): 4933-4943.DOI: 10.11949/0438-1157.20250074
• Energy and environmental engineering • Previous Articles Next Articles
Lu LIU1,2(
), Wenyue WANG1, Teng WANG1,2(
), Tai WANG1,2, Xinyu DONG1,2, Jiancheng TANG3, Shaoheng WANG4
Received:2025-01-17
Revised:2025-06-29
Online:2025-10-23
Published:2025-09-25
Contact:
Teng WANG
刘璐1,2(
), 王文玥1, 王腾1,2(
), 王太1,2, 董新宇1,2, 汤建成3, 王少恒4
通讯作者:
王腾
作者简介:刘璐(1984—),女,博士,教授,luliu@ncepu.edu.cn
基金资助:CLC Number:
Lu LIU, Wenyue WANG, Teng WANG, Tai WANG, Xinyu DONG, Jiancheng TANG, Shaoheng WANG. Optimization and analysis of hydrogen liquefaction process based on dual mixed refrigerant deep-cooling[J]. CIESC Journal, 2025, 76(9): 4933-4943.
刘璐, 王文玥, 王腾, 王太, 董新宇, 汤建成, 王少恒. 基于双混合工质深冷的氢液化工艺优化与分析[J]. 化工学报, 2025, 76(9): 4933-4943.
Add to citation manager EndNote|Ris|BibTeX
| 组分/%(mol) | MR1循环 | MR2循环 | MR3循环 |
|---|---|---|---|
| CH4 | 17 | — | — |
| C2H4 | 16 | — | — |
| C2H6 | 7 | — | — |
| C3H8 | 18 | — | — |
| n-C4H10 | 2 | — | — |
| n-C5H12 | 15 | — | — |
| H2 | 1 | 87 | 18 |
| N2 | 16 | — | — |
| R-14 | 8 | — | — |
| He | — | — | 81 |
| Ne | — | 13 | 1 |
Table 1 Composition of mixed refrigerant
| 组分/%(mol) | MR1循环 | MR2循环 | MR3循环 |
|---|---|---|---|
| CH4 | 17 | — | — |
| C2H4 | 16 | — | — |
| C2H6 | 7 | — | — |
| C3H8 | 18 | — | — |
| n-C4H10 | 2 | — | — |
| n-C5H12 | 15 | — | — |
| H2 | 1 | 87 | 18 |
| N2 | 16 | — | — |
| R-14 | 8 | — | — |
| He | — | — | 81 |
| Ne | — | 13 | 1 |
| 参数 | 数值 |
|---|---|
| 种群大小 | 400 |
| 最大进化代数 | 600 |
| 交叉概率 | 0.8 |
| 变异率 | 0.2 |
Table 2 The setting parameters of genetic algorithms
| 参数 | 数值 |
|---|---|
| 种群大小 | 400 |
| 最大进化代数 | 600 |
| 交叉概率 | 0.8 |
| 变异率 | 0.2 |
| 决策变量 | 优化前 | 优化后 | 决策变量 | 优化前 | 优化后 |
|---|---|---|---|---|---|
| pPR1/kPa | 140 | 199.5 | mPR1/(kg/s) | 91.5 | 102.70 |
| pPR2/kPa | 600 | 647.5 | mN9a/(kg/s) | 11.8 | 11.64 |
| pPR5a/kPa | 1600 | 1508.0 | mN10a/(kg/s) | 15.8 | 14.92 |
| pN1/kPa | 104 | 108.7 | mM10a/(kg/s) | 17.6 | 21.23 |
| pN2/kPa | 240 | 225.7 | mM11a/(kg/s) | 8.1 | 12.90 |
| pN4/kPa | 470 | 492.3 | TM10c/℃ | -248.1 | -246.7 |
| pM1/kPa | 105 | 120.2 | TM11c/℃ | -254.0 | -253.3 |
| pM2/kPa | 250 | 238.4 | TN9c/℃ | -219.5 | -219.0 |
| pM4/kPa | 460 | 474.5 | TN10c/℃ | -236.5 | -235.7 |
Table 3 Comparison of decision variables before and after optimization
| 决策变量 | 优化前 | 优化后 | 决策变量 | 优化前 | 优化后 |
|---|---|---|---|---|---|
| pPR1/kPa | 140 | 199.5 | mPR1/(kg/s) | 91.5 | 102.70 |
| pPR2/kPa | 600 | 647.5 | mN9a/(kg/s) | 11.8 | 11.64 |
| pPR5a/kPa | 1600 | 1508.0 | mN10a/(kg/s) | 15.8 | 14.92 |
| pN1/kPa | 104 | 108.7 | mM10a/(kg/s) | 17.6 | 21.23 |
| pN2/kPa | 240 | 225.7 | mM11a/(kg/s) | 8.1 | 12.90 |
| pN4/kPa | 470 | 492.3 | TM10c/℃ | -248.1 | -246.7 |
| pM1/kPa | 105 | 120.2 | TM11c/℃ | -254.0 | -253.3 |
| pM2/kPa | 250 | 238.4 | TN9c/℃ | -219.5 | -219.0 |
| pM4/kPa | 460 | 474.5 | TN10c/℃ | -236.5 | -235.7 |
| 设备 | 功率/kW | 比能耗/(kWh/kg) | 设备 | 功率/kW | 比能耗/(kWh/kg) | ||
|---|---|---|---|---|---|---|---|
| 优化前 | 优化后 | 优化后 | 优化前 | 优化后 | 优化后 | ||
| Com-1 | 7019 | 8609 | 0.69 | Exp-1 | 1771 | 1778 | 0.14 |
| Com-2 | 7318 | 5423 | 0.44 | Exp-2 | 1591 | 1548 | 0.12 |
| Com-3 | 15910 | 13630 | 1.10 | Exp-3 | 1816 | 1678 | 0.14 |
| Com-4 | 13450 | 14700 | 1.19 | Exp-4 | 766 | 754 | 0.06 |
| Com-5 | 19430 | 19100 | 1.54 | WNet | 78773 | 75094 | 6.07 |
| Com-6 | 21590 | 19390 | 1.57 | COP | 0.198 | 0.208 | — |
Table 4 The specific energy consumption and output power of each device before and after optimization
| 设备 | 功率/kW | 比能耗/(kWh/kg) | 设备 | 功率/kW | 比能耗/(kWh/kg) | ||
|---|---|---|---|---|---|---|---|
| 优化前 | 优化后 | 优化后 | 优化前 | 优化后 | 优化后 | ||
| Com-1 | 7019 | 8609 | 0.69 | Exp-1 | 1771 | 1778 | 0.14 |
| Com-2 | 7318 | 5423 | 0.44 | Exp-2 | 1591 | 1548 | 0.12 |
| Com-3 | 15910 | 13630 | 1.10 | Exp-3 | 1816 | 1678 | 0.14 |
| Com-4 | 13450 | 14700 | 1.19 | Exp-4 | 766 | 754 | 0.06 |
| Com-5 | 19430 | 19100 | 1.54 | WNet | 78773 | 75094 | 6.07 |
| Com-6 | 21590 | 19390 | 1.57 | COP | 0.198 | 0.208 | — |
| 设备 | 㶲平衡方程 |
|---|---|
| 压缩机 | |
| 换热器 | |
| 冷却器 | |
| J-T 阀 | |
| 膨胀机 |
Table 5 Exergy balance equation of main equipment
| 设备 | 㶲平衡方程 |
|---|---|
| 压缩机 | |
| 换热器 | |
| 冷却器 | |
| J-T 阀 | |
| 膨胀机 |
| 产量/(t/d) | 深冷阶段制冷方式 | 是否级联 | 正仲氢转化类型 | 比能耗/(kWh/kg) | 㶲效率/% | 文献 |
|---|---|---|---|---|---|---|
| 90 | 单混合 | 否 | — | 6.47 | 45.50 | [ |
| 100 | 多级联 | 否 | 绝热 | 7.69 | 39.50 | [ |
| 300 | 双混合 | 否 | 等温 | 5.74 | 55.3 | [ |
| 300 | 单混合 | 是 | 绝热 | 5.66 | 52.77 | [ |
| 300 | 单混合 | 否 | 绝热 | 6.43 | — | [ |
| 300 | 双混合 | 是 | 绝热 | 6.07 | 53.01 | 本文 |
Table 6 Performance comparison of hydrogen liquefaction processes
| 产量/(t/d) | 深冷阶段制冷方式 | 是否级联 | 正仲氢转化类型 | 比能耗/(kWh/kg) | 㶲效率/% | 文献 |
|---|---|---|---|---|---|---|
| 90 | 单混合 | 否 | — | 6.47 | 45.50 | [ |
| 100 | 多级联 | 否 | 绝热 | 7.69 | 39.50 | [ |
| 300 | 双混合 | 否 | 等温 | 5.74 | 55.3 | [ |
| 300 | 单混合 | 是 | 绝热 | 5.66 | 52.77 | [ |
| 300 | 单混合 | 否 | 绝热 | 6.43 | — | [ |
| 300 | 双混合 | 是 | 绝热 | 6.07 | 53.01 | 本文 |
| [1] | Yuksel Y E, Ozturk M, Dincer I. Analysis and assessment of a novel hydrogen liquefaction process[J]. International Journal of Hydrogen Energy, 2017, 42(16): 11429-11438. |
| [2] | Won W, Kwon H, Han J H, et al. Design and operation of renewable energy sources based hydrogen supply system: technology integration and optimization[J]. Renewable Energy, 2017, 103: 226-238. |
| [3] | Uyar T S, Beşikci D. Integration of hydrogen energy systems into renewable energy systems for better design of 100% renewable energy communities[J]. International Journal of Hydrogen Energy, 2017, 42(4): 2453-2456. |
| [4] | Aasadnia M, Mehrpooya M. Large-scale liquid hydrogen production methods and approaches: a review[J]. Applied Energy, 2018, 212: 57-83. |
| [5] | Al Ghafri S Z, Munro S, Cardella U, et al. Hydrogen liquefaction: a review of the fundamental physics, engineering practice and future opportunities[J]. Energy & Environmental Science, 2022, 15(7): 2690-2731. |
| [6] | Hoffman P. Hydrogen: the optimum chemical fuel[J]. Applied Energy, 1994, 47(2/3): 183-199. |
| [7] | Aziz M. Liquid hydrogen: a review on liquefaction, storage, transportation, and safety[J]. Energies, 2021, 14(18): 5917. |
| [8] | 殷靓, 巨永林. 氢液化流程设计和优化方法研究进展[J]. 制冷学报, 2020, 41(3): 1-10. |
| Yin L, Ju Y L. Review on researches and developments of the design and optimization for hydrogen liquefaction processes[J]. Journal of Refrigeration, 2020, 41(3): 1-10. | |
| [9] | Riaz A, Qyyum M A, Min S, et al. Performance improvement potential of harnessing LNG regasification for hydrogen liquefaction process: energy and exergy perspectives[J]. Applied Energy, 2021, 301: 117471. |
| [10] | Sleiti A K, Al-Ammari W A, Ghani S, et al. A novel hydrogen liquefaction process using dual mixed cryogenic refrigeration system: energy, exergy, and economic analysis[J]. International Journal of Hydrogen Energy, 2024, 56: 1324-1339. |
| [11] | Bracha M, Lorenz G, Patzelt A, et al. Large-scale hydrogen liquefaction in Germany[J]. International Journal of Hydrogen Energy, 1994, 19(1): 53-59. |
| [12] | Naquash A, Qyyum M A, Min S, et al. Carbon-dioxide-precooled hydrogen liquefaction process: an innovative approach for performance enhancement—energy, exergy, and economic perspectives[J]. Energy Conversion and Management, 2022, 251: 114947. |
| [13] | 唐璐, 邱利民, 姚蕾, 等. 氢液化系统的研究进展与展望[J]. 制冷学报, 2011, 32(6): 1-8. |
| Tang L, Qiu L M, Yao L, et al. Review on research and developments of hydrogen liquefaction systems[J]. Journal of Refrigeration, 2011, 32(6): 1-8. | |
| [14] | 蔡伟华, 宇世鹏, 梁丽, 等. 液氮预冷双路循环氢液化系统优化与分析[J]. 工程热物理学报, 2024, 45(11): 3253-3261. |
| Cai W H, Yu S P, Liang L, et al. Optimization and analysis of liquid nitrogen precooling dual cycle hydrogen liquefaction system[J]. Journal of Engineering Thermophysics, 2024, 45(11): 3253-3261. | |
| [15] | Krasae-in S, Stang J H, Neksa P. Development of large-scale hydrogen liquefaction processes from 1898 to 2009[J]. International Journal of Hydrogen Energy, 2010, 35(10): 4524-4533. |
| [16] | 王昊成, 杨敬瑶, 董学强, 等. 10 t/d级氢液化装置流程热力分析与优化[J]. 化工学报, 2022, 73(11): 5106-5117. |
| Wang H C, Yang J Y, Dong X Q, et al. Thermodynamic analysis and optimization of 10 t/d hydrogen liquefaction process[J]. CIESC Journal, 2022, 73(11): 5106-5117. | |
| [17] | 唐璐. 基于液氮预冷的氢液化流程设计及系统模拟[D]. 杭州: 浙江大学, 2012. |
| Tang L. Design and system simulation of hydrogen liquefaction process based on liquid nitrogen precooling[D]. Hangzhou: Zhejiang University, 2012. | |
| [18] | Yin L, Ju Y L. Review on the design and optimization of hydrogen liquefaction processes[J]. Frontiers in Energy, 2020, 14(3): 530-544. |
| [19] | Aasadnia M, Mehrpooya M. Conceptual design and analysis of a novel process for hydrogen liquefaction assisted by absorption precooling system[J]. Journal of Cleaner Production, 2018, 205: 565-588. |
| [20] | 王国聪, 徐则林, 多志丽, 等. 混合制冷剂氢气液化工艺优化[J]. 东北电力大学学报, 2021, 41(6): 61-70. |
| Wang G C, Xu Z L, Duo Z L, et al. Optimization of mixed refrigerant hydrogen liquefaction process[J]. Journal of Northeast Electric Power University, 2021, 41(6): 61-70. | |
| [21] | 孙恒, 徐嘉明, 王超, 等. LNG预冷的新型氢液化工艺设计与优化[J]. 低碳化学与化工, 2023, 48(6): 134-141, 149. |
| Sun H, Xu J M, Wang C, et al. Design and optimization of novel hydrogen liquefaction process with LNG pre-cooling[J]. Low-Carbon Chemistry and Chemical Engineering, 2023, 48(6): 134-141, 149. | |
| [22] | Quack H. Conceptual design of a high efficiency large capacity hydrogen liquefier[C]//Advances in Cryogenic Engineering: Proceedings of the Cryogenic Engineering Conference. AIP, 2002: 255-263. |
| [23] | Sadaghiani M S, Mehrpooya M. Introducing and energy analysis of a novel cryogenic hydrogen liquefaction process configuration[J]. International Journal of Hydrogen Energy, 2017, 42(9): 6033-6050. |
| [24] | Qyyum M A, Ahmed F, Nawaz A, et al. Teaching-learning self-study approach for optimal retrofitting of dual mixed refrigerant LNG process: energy and exergy perspective[J]. Applied Energy, 2021, 298: 117187. |
| [25] | Geng J L, Sun H. A novel integrated hydrogen and natural gas liquefaction process utilizing a modified double mixed refrigerant process pre-cooling system[J]. Applied Thermal Engineering, 2023, 224: 120085. |
| [26] | Asadnia M, Mehrpooya M. A novel hydrogen liquefaction process configuration with combined mixed refrigerant systems[J]. International Journal of Hydrogen Energy, 2017, 42(23): 15564-15585. |
| [27] | Zhang S G, Liu G L. Design and performance analysis of a hydrogen liquefaction process[J]. Clean Technologies and Environmental Policy, 2022, 24(1): 51-65. |
| [28] | Yu S P, Wang Z X, Qiu G D, et al. Optimization and analysis of a novel hydrogen liquefaction coupled system with dual path hydrogen refrigeration cycle and the closed nitrogen cycle pre-cooling[J]. Journal of Cleaner Production, 2024, 470: 143281. |
| [29] | Sun H, Xu J M, Wang C, et al. Optimization and analysis of a cascaded dual mixed refrigerant hydrogen liquefaction process considering the influence of pre-cooling stages[J]. International Journal of Hydrogen Energy, 2023, 48(81): 31653-31670. |
| [30] | Sun H, Geng J L, Wang C, et al. Optimization of a hydrogen liquefaction process utilizing mixed refrigeration considering stages of ortho-para hydrogen conversion[J]. International Journal of Hydrogen Energy, 2022, 47(39): 17271-17284. |
| [31] | Ganni V. Optimal design and operation of helium refrigeration systems[R]. Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States), 2010. |
| [1] | Xinquan SHA, Ran HU, Lei DING, Zhenhua JIANG, Yinong WU. Development and testing of an independent two-stage valved linear compressor for space applications [J]. CIESC Journal, 2025, 76(S1): 114-122. |
| [2] | Yuqing YANG, Yinlong LI, Gang YAN. Thermodynamic analysis of auto-cascade high-temperature heat pump cycle using low GWP refrigerant [J]. CIESC Journal, 2025, 76(S1): 43-53. |
| [3] | Jianbin PENG, Ming LI, Junlong XIE, Jianye CHEN. Numerical investigation of liquid hydrogen leakage and explosion overpressure at liquid hydrogen receiving terminal [J]. CIESC Journal, 2025, 76(S1): 453-461. |
| [4] | Hao DING, Lin WANG, Hao LIU. Comparative study on mixing rules of vapor-liquid equilibrium for R290/R245fa [J]. CIESC Journal, 2025, 76(S1): 9-16. |
| [5] |
Jichao GUO, Xiaoxiao XU, Yunlong SUN.
Airflow simulation and optimization based on |
| [6] | Yifan SHI, Gang KE, Hao CHEN, Xiaosheng HUANG, Fang YE, Chengjiao LI, Hang GUO. Simulation of temperature control in large-scale high and low temperature environmental laboratory [J]. CIESC Journal, 2025, 76(S1): 268-280. |
| [7] | Youmiao ZHOU, Ye LIU, Feng YU, Xiaoyu LUO, Binhui WANG. Analysis of a novel dual heat source compression-ejection hybrid heat pump system [J]. CIESC Journal, 2025, 76(S1): 36-42. |
| [8] | Ting HE, Kai ZHANG, Wensheng LIN, Liqiong CHEN, Jiafu CHEN. Research on integrated process of cryogenic CO2 removal under supercritical pressure and liquefaction for biogas [J]. CIESC Journal, 2025, 76(S1): 418-425. |
| [9] | Xu GUO, Jining JIA, Kejian YAO. Modeling of batch distillation process based on optimized CNN-BiLSTM neural network [J]. CIESC Journal, 2025, 76(9): 4613-4629. |
| [10] | Jie WANG, Qucheng LIN, Xianming ZHANG. Global optimization of mixed gas multistage membrane separation system based on decomposition algorithm [J]. CIESC Journal, 2025, 76(9): 4670-4682. |
| [11] | Yiyang LIU, Zhixiang XING, Yecheng LIU, Ming PENG, Yuyang LI, Yunhao LI, Ningzhou SHEN. Numerical simulation study on the leakage diffusion characteristics and safety monitoring of liquid hydrogen in hydrogen refueling stations [J]. CIESC Journal, 2025, 76(9): 4694-4708. |
| [12] | Jiaqing ZOU, Zhaoyu ZHANG, Jianguo ZHANG, Boyu ZHANG, Dingsheng LIU, Qing MAO, Ting WANG, Jianjun LI. Generation and evolution of bubbles in channels of bipolar plates of alkaline water electrolyzers for producing hydrogen [J]. CIESC Journal, 2025, 76(9): 4786-4799. |
| [13] | Zhengzong HUANG, Kecheng LIU, Zefang LI, Pingsheng ZENG, YongFu LIU, Hongjie YAN, Liu LIU. Numerical simulation and field synergy optimization of brick-built heat exchange chamber in zinc refining furnace [J]. CIESC Journal, 2025, 76(9): 4425-4439. |
| [14] | Zhihong JIANG, Qian LEI, Yinjun ZHU, Zhigang LEI, Honglin CHEN. Study on physical property model and enrichment process of trioxane system [J]. CIESC Journal, 2025, 76(9): 4872-4881. |
| [15] | Sanyi WANG, Wenlai HUANG. Modeling and optimization of electrochemical ammonia synthesis [J]. CIESC Journal, 2025, 76(9): 4474-4486. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||