| 1 |
张派伟, 张振迎, 武雨萌, 等. 热泵干燥技术的应用现状及展望[J]. 化学工程, 2024, 52(6): 40-46.
|
|
Zhang P W, Zhang Z Y, Wu Y M, et al. Application and prospects of heat pump drying technology[J]. Chemical Engineering, 2024, 52(6): 40-46.
|
| 2 |
Zou L G, Liu Y, Yu M Q, et al. A review of solar assisted heat pump technology for drying applications[J]. Energy, 2023, 283: 129215.
|
| 3 |
Li F L, Li R R, Li X C, et al. Experimental investigation on a R134a ejector refrigeration system under overall modes[J]. Applied Thermal Engineering, 2018, 137: 784-791.
|
| 4 |
Li J, Fan Y, Zhao X D, et al. Design and analysis of a novel dual source vapor injection heat pump using exhaust and ambient air[J]. Energy and Built Environment, 2022, 3(1): 95-104.
|
| 5 |
Sun W, He G G, Ning Q, et al. Performance investigation and design optimization of a vapor injection rotary compressor without check valve in injection path[J]. Applied Thermal Engineering, 2021, 197: 117372.
|
| 6 |
Cui C, Ren J H, Song Y L, et al. Multi-variable extreme seeking control for efficient operation of sub-cooler vapor injection trans-critical CO2 heat pump water heater[J]. Applied Thermal Engineering, 2021, 184: 116261.
|
| 7 |
Baek C, Heo J, Jung J, et al. Performance characteristics of a two-stage CO2 heat pump water heater adopting a sub-cooler vapor injection cycle at various operating conditions[J]. Energy, 2014, 77: 570-578.
|
| 8 |
Peng X, Wang D B, Wang G H, et al. Numerical investigation on the heating performance of a transcritical CO2 vapor-injection heat pump system[J]. Applied Thermal Engineering, 2020, 166: 114656.
|
| 9 |
Roh C W, Kim M S. Effect of vapor-injection technique on the performance of a cascade heat pump water heater[J]. International Journal of Refrigeration, 2014, 38: 168-177.
|
| 10 |
Wang J J, Qv D, Yao Y, et al. The difference between vapor injection cycle with flash tank and intermediate heat exchanger for air source heat pump: an experimental and theoretical study[J]. Energy, 2021, 221: 119796.
|
| 11 |
Heo J, Jeong M W, Baek C, et al. Comparison of the heating performance of air-source heat pumps using various types of refrigerant injection[J]. International Journal of Refrigeration, 2011, 34(2): 444-453.
|
| 12 |
Tello-Oquendo F M, Navarro-Peris E, Gonzálvez-Maciá J. Comparison of the performance of a vapor-injection scroll compressor and a two-stage scroll compressor working with high pressure ratios[J]. Applied Thermal Engineering, 2019, 160: 114023.
|
| 13 |
Zou L G, Liu Y, Yu J L. Energy, exergy and economic evaluation of a solar enhanced ejector expansion heat pump cycle[J]. Renewable Energy, 2023, 217: 119119.
|
| 14 |
张艺晨, 杨勇平, 戈志华, 等. 基于能量梯级利用的高效灵活供热系统性能研究[J]. 动力工程学报, 2023, 43(8): 1085-1094.
|
|
Zhang Y C, Yang Y P, Ge Z H, et al. Performance study of an efficient and flexible heating system based on cascade use of energy[J]. Journal of Chinese Society of Power Engineering, 2023, 43(8): 1085-1094.
|
| 15 |
叶盛辉, 周超辉, 程康, 等. 文献聚类视角下的中国热泵研究进展[J]. 暖通空调, 2023, 53(1): 11-24.
|
|
Ye S H, Zhou C H, Cheng K, et al. Research progress of heat pumps in China from perspective of literature clustering[J]. Heating Ventilating & Air Conditioning, 2023, 53(1): 11-24.
|
| 16 |
龚赞, 刘益才, 邓炎, 等. 太阳能热泵系统配置形式及其研究进展[J]. 太阳能学报, 2023, 44(4): 506-515.
|
|
Gong Z, Liu Y C, Deng Y, et al. Configuration forms and research progress of solar assisted heat pump system[J]. Acta Energiae Solaris Sinica, 2023, 44(4): 506-515.
|
| 17 |
张展, 杜永恒, 张超, 等. 基于补气增焓技术的复合空气源热泵系统实验性能研究[J]. 建筑节能(中英文), 2023, 51(4): 117-123.
|
|
Zhang Z, Du Y H, Zhang C, et al. Experimental performance study of composite air source heat pump system based on enhanced vapor injection technology[J]. Building Energy Efficiency, 2023, 51(4): 117-123.
|
| 18 |
Cai J Y, Zhou H H, Xu L J, et al. Energy and exergy analysis of a novel solar-air composite source multi-functional heat pump[J]. Renewable Energy, 2022, 185: 32-46.
|
| 19 |
王君, 余本东, 王矗垚, 等. 太阳能光伏光热建筑一体化(BIPV/T)研究新进展[J]. 太阳能学报, 2022, 43(6): 72-78.
|
|
Wang J, Yu B D, Wang C Y, et al. New advancements of building integrated photovoltaic/thermal system (BIPV/T)[J]. Acta Energiae Solaris Sinica, 2022, 43(6): 72-78.
|
| 20 |
Wang Y B, Quan Z H, Zhao Y H, et al. Energy and exergy analysis of a novel dual-source heat pump system with integrated phase change energy storage[J]. Renewable Energy, 2024, 222: 119905.
|
| 21 |
Banister C J, Collins M R. Development and performance of a dual tank solar-assisted heat pump system[J]. Applied Energy, 2015, 149: 125-132.
|
| 22 |
Wu D, Hu B, Wang R Z. Vapor compression heat pumps with pure low-GWP refrigerants[J]. Renewable and Sustainable Energy Reviews, 2021, 138: 110571.
|
| 23 |
Cheng Y, Wang M, Yu J L, Thermodynamic analysis of a novel solar-driven booster-assisted ejector refrigeration cycle[J]. Solar Energy, 2021, 218: 85-94.
|
| 24 |
Nawaz K, Shen B, Elatar A, et al. R1234yf and R1234ze(E) as low-GWP refrigerants for residential heat pump water heaters[J], International Journal of Refrigeration, 2017, 82: 348-365.
|
| 25 |
Zou L G, Liu Y, Yu M Q, et al. A modified dual-ejector enhanced dual-evaporator transcritical CO2 refrigeration cycle: 4E (energy, exergy, economic and environmental) assessment[J]. Energy Conversion and Management, 2024, 303: 118181.
|
| 26 |
Gu W, Weng Y, Wang Y, et al. Theoretical and experimental investigation of an organic Rankine cycle for a waste heat recovery system[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2009, 223(5): 523-533.
|
| 27 |
Zhou Y M, Ye Liu Y, Jing S Q, et al. Performance analysis of a modified solar assisted ejection-compression heat pump cycle for drying application[J]. Solar Energy, 2024, 280: 112873.
|
| 28 |
Liu J R, Yu J L, Yan G. Experimental study on performance characteristics of a -70℃ ultra-low temperature medical freezer with mixed hydrocarbon refrigerant[J]. Energy, 2024, 307: 132596.
|
| 29 |
Lu Y, Bai T, Yu J L. Experimental investigation on a -40℃ low-temperature freezer using ejector-expansion refrigeration system[J]. International Journal of Refrigeration, 2020, 118: 230-237.
|
| 30 |
Bai T, Yan G, Yu J L. Experimental investigation of an ejector-enhanced auto-cascade refrigeration system[J]. Applied Thermal Engineering, 2018, 129: 792-801.
|