CIESC Journal ›› 2025, Vol. 76 ›› Issue (12): 6633-6643.DOI: 10.11949/0438-1157.20250410
• Energy and environmental engineering • Previous Articles Next Articles
Feifei HU1,2(
), Cheng WANG3, Baohua WANG4, Hao DU2,5, Jian QI4, Haixu WANG6, Shaona WANG2(
)
Received:2025-04-17
Revised:2025-06-12
Online:2026-01-23
Published:2025-12-31
Contact:
Shaona WANG
胡飞飞1,2(
), 王程3, 王宝华4, 杜浩2,5, 祁健4, 王海旭6, 王少娜2(
)
通讯作者:
王少娜
作者简介:胡飞飞(2000—),女,硕士研究生,18247488929@163.com
基金资助:CLC Number:
Feifei HU, Cheng WANG, Baohua WANG, Hao DU, Jian QI, Haixu WANG, Shaona WANG. Preparation of 3.5-valent vanadium electrolyte via ammonia gas-phase reduction[J]. CIESC Journal, 2025, 76(12): 6633-6643.
胡飞飞, 王程, 王宝华, 杜浩, 祁健, 王海旭, 王少娜. 氨气气相还原法短程制备3.5价钒电解液[J]. 化工学报, 2025, 76(12): 6633-6643.
Add to citation manager EndNote|Ris|BibTeX
| 项目 | 传统工艺 | 本研究新工艺 |
|---|---|---|
| 原料 | 五氧化二钒(71~72 CNY/kg) | 偏钒酸铵(69 CNY/kg) 多钒酸铵(67 CNY/kg) |
| 工序 | 化学还原-电解-复配(V3+∶V4+=1∶1) | 气相还原-溶解 |
能耗结构 | 电解能耗高,单位投资高1.89~3.15 kWh/kg V(电解过程) | 焙烧热能为主,时间集中0.21~0.29 kWh/kg V(焙烧过程) |
| 优点 | 技术成熟 | 工序简化、能耗低 |
| 局限性 | 还原剂/副产物残留、能耗高、流程长 | 氨气高温处理需严格安全措施 |
Table 1 Comparison of 3.5-valent vanadium electrolyte preparation processes
| 项目 | 传统工艺 | 本研究新工艺 |
|---|---|---|
| 原料 | 五氧化二钒(71~72 CNY/kg) | 偏钒酸铵(69 CNY/kg) 多钒酸铵(67 CNY/kg) |
| 工序 | 化学还原-电解-复配(V3+∶V4+=1∶1) | 气相还原-溶解 |
能耗结构 | 电解能耗高,单位投资高1.89~3.15 kWh/kg V(电解过程) | 焙烧热能为主,时间集中0.21~0.29 kWh/kg V(焙烧过程) |
| 优点 | 技术成熟 | 工序简化、能耗低 |
| 局限性 | 还原剂/副产物残留、能耗高、流程长 | 氨气高温处理需严格安全措施 |
Fig.3 The Gibbs free energy of the reduction of vanadium oxide by ammonia gas(a); XPS spectra of products obtained at 300—500℃: NH3 reduction of NH4VO3 (b); NH3 reduction of (NH4)2V6O16 (c); NH₃ reduction of V2O5 (d)
Fig.4 The effects of reaction temperatures and NH3 flow rates on the phase structure of NH4VO3 reduction products and vanadium valence states in the electrolyte
| 原料 | 氧化峰电流(IPO)/mA | 还原峰电流(IPR)/mA | 峰值电流比(IPO/IPR) | 峰值电位差(ΔEP)/V | 电导率/(S/m) |
|---|---|---|---|---|---|
| 偏钒酸铵 | 9.51 | 6.76 | 1.40 | 0.26 | 19.17 |
| 五氧化二钒 | 9.87 | 6.69 | 1.47 | 0.27 | 12.83 |
| 多钒酸铵 | 9.88 | 6.37 | 1.55 | 0.35 | 11.02 |
Table 2 Electrochemical and conductivity analysis of 3.5-valent vanadium electrolytes derived from various vanadium materials
| 原料 | 氧化峰电流(IPO)/mA | 还原峰电流(IPR)/mA | 峰值电流比(IPO/IPR) | 峰值电位差(ΔEP)/V | 电导率/(S/m) |
|---|---|---|---|---|---|
| 偏钒酸铵 | 9.51 | 6.76 | 1.40 | 0.26 | 19.17 |
| 五氧化二钒 | 9.87 | 6.69 | 1.47 | 0.27 | 12.83 |
| 多钒酸铵 | 9.88 | 6.37 | 1.55 | 0.35 | 11.02 |
| [1] | Zhu D, Zhu B Q, et al. Global carbon emissions and decarbonization in 2024[J]. Nature Reviews Earth & Environment, 2025, 6(4): 231-233. |
| [2] | Liu X, Zhang Y, Smith J . et al. Globally interconnected solar-wind system addresses future energy variability[J]. Nature, 2025, 630: 123-130. |
| [3] | Meng Y C, Ye Z, Chen L, et al. Energy storage deployment and benefits in the Chinese electricity market considering renewable energy uncertainty and energy storage life cycle costs[J]. Processes, 2024, 12(1): 130. |
| [4] | Sharmoukh W. Redox flow batteries as energy storage systems: materials, viability, and industrial applications[J]. RSC Advances, 2025, 15(13): 10106-10143. |
| [5] | Huang Z B, Mu A L, Wu L X, et al. Comprehensive analysis of critical issues in all-vanadium redox flow battery[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(24): 7786-7810. |
| [6] | Ashok A, Kumar A. A comprehensive review of metal-based redox flow batteries: progress and perspectives[J]. Green Chemistry Letters and Reviews, 2024, 17(1): 2302834. |
| [7] | Shi Y, Eze C K, Xiong B Y, et al. Recent development of membrane for vanadium redox flow battery applications: a review[J]. Applied Energy, 2019, 238: 202-224. |
| [8] | Jung B Y, Ryu C H, Hwang G J. Characteristics of the all-vanadium redox flow battery using ammonium metavanadate electrolyte[J]. Korean Journal of Chemical Engineering, 2022, 39(9): 2361-2367. |
| [9] | Zheng N B, Qiu X M, Jin S Q, et al. Preparation of V4+ electrolyte by nanofluid-based electrocatalytic reduction of V2O5 for vanadium redox flow batteries[J]. Electrochimica Acta, 2025, 513: 145532. |
| [10] | Du J Y, Lin H T, Zhang L Y, et al. Advanced materials for vanadium redox flow batteries: major obstacles and optimization strategies[J]. Advanced Functional Materials, 2025: 2501689. |
| [11] | 国家市场监督管理总局, 国家标准化管理委员会. 全钒液流电池用电解液: [S]. 北京: 中国标准出版社, 2018. |
| State Administration for Market Regulation, Standardization Administration of the People's Republic of China. Electrolyte for vanadium flow battery: [S]. Beijing: Standards Press of China, 2018. | |
| [12] | Maurice A A, Quintero A E, Vera M. A comprehensive guide for measuring total vanadium concentration and state of charge of vanadium electrolytes using UV-Visible spectroscopy[J]. Electrochimica Acta, 2024, 482: 144003. |
| [13] | 胡超, 董玉明, 张伟, 等. 浓硫酸活化五氧化二钒制备高浓度全钒液流电池正极电解液[J]. 化工学报, 2023, 74(S1): 338-345. |
| Hu C, Dong Y M, Zhang W, et al. Preparation of high concentration positive electrolyte for all-vanadium flow battery by activating vanadium pentoxide with concentrated sulfuric acid[J]. CIESC Journal, 2023, 74(S1): 338-345. | |
| [14] | Guo Y, Yang Y D, Li W J, et al. Novel process to prepare a vanadium electrolyte from a calcification roasting-acid leaching solution of vanadium slag[J]. Industrial & Engineering Chemistry Research, 2023, 62(40): 16411-16418. |
| [15] | Khaki B, Das P. Definition of multi-objective operation optimization of vanadium redox flow and lithium-ion batteries considering levelized cost of energy, fast charging, and energy efficiency based on current density[J]. Journal of Energy Storage, 2023, 64: 107246. |
| [16] | Hu C, Dong Y M, Zhang W, et al. Clean preparation of mixed trivalent and quadrivalent vanadium electrolyte for vanadium redox flow batteries by catalytic reduction with hydrogen[J]. Journal of Power Sources, 2023, 555: 232330. |
| [17] | Skyllas-Kazacos M, Kazacos G, Poon G, et al. Recent advances with UNSW vanadium-based redox flow batteries[J]. International Journal of Energy Research, 2010, 34(2): 182-189. |
| [18] | 郭辉. 全钒液流电池用电解液的制备与性能研究[D]. 北京: 北京化工大学, 2022. |
| Guo H. Preparation and properties of electrolyte for vanadium flow battery[D]. Beijing: Beijing University of Chemical Technology, 2022. | |
| [19] | Guo Y, Huang J, Feng J K. Research progress in preparation of electrolyte for all-vanadium redox flow battery[J]. Journal of Industrial and Engineering Chemistry, 2023, 118: 33-43. |
| [20] | 叶涛, 王怡君, 唐子龙, 等. 全钒液流电池电解液容量衰减及草酸恢复研究[J]. 储能科学与技术, 2025, 14(3): 1177-1186. |
| Ye T, Wang Y J, Tang Z L, et al. Investigation of capacity fading in vanadium flow battery electrolytes and recovery via oxalic acid[J]. Energy Storage Science and Technology, 2025, 14(3): 1177-1186. | |
| [21] | Wang Y H, Chen P, He H. Review: preparation and modification of all-vanadium redox flow battery electrolyte for green development[J]. Ionics, 2025, 31(1): 23-40. |
| [22] | 河钟郁, 黄德炫. 钒电解液的制备方法以及包含钒电解液的电池: 117397075A[P]. 2024-01-12. |
| He Z Y, Huang D X. Preparation method of vanadium electrolyte and battery containing vanadium electrolyte: 117397075A[P]. 2024-01-12. | |
| [23] | 胡超. 全钒液流电池电解液的制备及其性能研究[D]. 秦皇岛: 燕山大学, 2023. |
| Hu C. Preparation and properties of electrolyte for vanadium flow battery[D]. Qinhuangdao: Yanshan University, 2023. | |
| [24] | 王程. 氨气气相还原短程制备钒电解液应用基础研究[D]. 北京: 中国科学院大学, 2024. |
| Wang C. Basic research on the application of ammonia gas phase reduction in the short-range preparation of vanadium electrolytes[D]. Beijing: Uniuersity of Chinese Academy of Sciences, 2024. | |
| [25] | 谢浩, 尹兴荣, 吴雄伟, 等. 用于全钒液流电池的钒电解液的制备方法及钒电解液和应用: 120089772A[P]. 2025-06-03. |
| Xie H, Ying X R, Wu X W, et al. Preparation method of vanadium electrolyte for all-vanadium redox flow batteries and application: 120089772A[P].2025-06-03. | |
| [26] | Wang C, Li L J, Du H. Cleaner production of 3.5 valent vanadium electrolyte from ammonium metavanadate by ammonia reduction-sulfuric acid dissolution method[J]. Tungsten, 2024, 6(3): 555-560. |
| [27] | 魏冬, 林友斌, 杨霖霖. 一种以多钒酸铵为原料制备全钒电解液的制备方法: 119674156A[P]. 2025-03-21. |
| Wei D, Lin Y B, Yang L L. Method for preparing all-vanadium electrolyte from ammonium polyvanadate: 119674156A[P]. 2025-03-21. | |
| [28] | 杨晓武, 李伟达, 袁爱武. 钒电解液的工业化制备技术分析[J]. 稀有金属与硬质合金, 2025, 53(3): 127-134. |
| Yang X W, Li W D, Yuan A W. Analysis of industrial preparation technology for vanadium electrolyte[J]. Rare Metals and Cemented Carbides, 2025, 53(3): 127-134. | |
| [29] | Cao L Y, Skyllas-Kazacos M, Menictas C, et al. A review of electrolyte additives and impurities in vanadium redox flow batteries[J]. Journal of Energy Chemistry, 2018, 27(5): 1269-1291. |
| [30] | Kang U I. Preparation of vanadium (3.5+) electrolyte by hydrothermal reduction process using citric acid for vanadium redox flow battery[J]. Electrochem, 2024, 5(4): 470-481. |
| [1] | Guoxiang HU, Yikui ZHU, Hua LONG, Xiaowen LIU, Qingang XIONG. Study on the underlying mechanism of choline chloride-lactic acid molar ratio influencing alkali lignin solubility in choline chloride-lactic acid deep eutectic solvents [J]. CIESC Journal, 2025, 76(9): 4449-4461. |
| [2] | Huiqin ZHANG, Hongjun ZHAO, Zhengjun FU, Li ZHUANG, Kai DONG, Tianzhi JIA, Xueli CAO, Shipeng SUN. Application of nanofiltration membrane in concentration of ionic rare earth leach solution [J]. CIESC Journal, 2025, 76(8): 4095-4107. |
| [3] | Xin LIU, Haoren ZHENG, Qiang CHEN, Jingyi DING, Kang HUANG, Zhi XU. Cellulose nanocrystals-doped hybrid matrix membranes for vanadium flow battery [J]. CIESC Journal, 2025, 76(5): 2294-2303. |
| [4] | Junying WANG, Hui JIN. Molecular dynamics investigation on the solubility parameters of supercritical CO2 and petroleum hydrocarbon [J]. CIESC Journal, 2025, 76(11): 5788-5798. |
| [5] | Zhicheng TANG, Tianwei WANG, Rongwen LYU, Shufen ZHANG. Amination of bromaminic acid catalyzed by Mn-containing basic copper carbonate electrocatalyst based on electrochemical reduction [J]. CIESC Journal, 2025, 76(11): 5923-5932. |
| [6] | Yansong HU, Zhao YANG, Lei GAO, Bujian ZHANG. Experimental study of solubility and viscosity of R513A and PVE lubricants [J]. CIESC Journal, 2025, 76(10): 5015-5023. |
| [7] | Lingyu LI, Xin HU, Huaigang CHENG, Yun ZHAO, Dong AN, Yujun MA, Jiahao JIN, Xudong YU, Weidong ZHANG. Isothermal evaporation salt-forming regions of the ternary water-salt systems K+(Mg2+), Ca2+//Cl--H2O [J]. CIESC Journal, 2025, 76(1): 120-130. |
| [8] | Xinyue WANG, Xiaohu XU, Haiyang ZHANG, Chunhua YIN. Study on encapsulation and properties vitamin A acetate/cyclodextrin [J]. CIESC Journal, 2024, 75(S1): 321-328. |
| [9] | Zhixing ZHAO, Zhihao YAO, Xuefeng YU, Yousheng YANG, Ying ZENG, Xudong YU. Multi-temperature phase diagram of lithium-sodium-magnesium coexistence sulfate system and its application [J]. CIESC Journal, 2024, 75(6): 2123-2133. |
| [10] | Youming SI, Lingfeng ZHENG, Pengzhong CHEN, Jiangli FAN, Xiaojun PENG. Performance and mechanism of novel antimony oxo cluster photoresist [J]. CIESC Journal, 2024, 75(4): 1705-1717. |
| [11] | Yuxiang CHEN, Chuanlei LIU, Zijun GONG, Qiyue ZHAO, Guanchu GUO, Hao JIANG, Hui SUN, Benxian SHEN. Machine learning-assisted solvent molecule design for efficient absorption of ethanethiol [J]. CIESC Journal, 2024, 75(3): 914-923. |
| [12] | Han TANG, Jin CAI, Haihang QIN, Guangjin CHEN, Changyu SUN. Predictive model on gas solubility in water-rich phase coexisted with gas hydrates [J]. CIESC Journal, 2024, 75(11): 4348-4358. |
| [13] | Chao HU, Yuming DONG, Wei ZHANG, Hongling ZHANG, Peng ZHOU, Hongbin XU. Preparation of high-concentration positive electrolyte of vanadium redox flow battery by activating vanadium pentoxide with highly concentrated sulfuric acid [J]. CIESC Journal, 2023, 74(S1): 338-345. |
| [14] | Xudong YU, Qi LI, Niancu CHEN, Li DU, Siying REN, Ying ZENG. Phase equilibria and calculation of aqueous ternary system KCl + CaCl2 + H2O at 298.2, 323.2, and 348.2 K [J]. CIESC Journal, 2023, 74(8): 3256-3265. |
| [15] | Ke CHEN, Li DU, Ying ZENG, Siying REN, Xudong YU. Phase equilibria and calculation of quaternary system LiCl+MgCl2+CaCl2+H2O at 323.2 K [J]. CIESC Journal, 2023, 74(5): 1896-1903. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||