CIESC Journal ›› 2024, Vol. 75 ›› Issue (S1): 321-328.DOI: 10.11949/0438-1157.20240291
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Xinyue WANG(), Xiaohu XU, Haiyang ZHANG, Chunhua YIN(
)
Received:
2024-03-12
Revised:
2024-04-18
Online:
2024-12-17
Published:
2024-12-25
Contact:
Chunhua YIN
通讯作者:
尹春华
作者简介:
王新月(2000—),女,硕士研究生,E-mail: 13784943565@163.com
基金资助:
CLC Number:
Xinyue WANG, Xiaohu XU, Haiyang ZHANG, Chunhua YIN. Study on encapsulation and properties vitamin A acetate/cyclodextrin[J]. CIESC Journal, 2024, 75(S1): 321-328.
王新月, 徐小虎, 张海洋, 尹春华. 维生素A醋酸酯/环糊精包合及性质研究[J]. 化工学报, 2024, 75(S1): 321-328.
样品化学位移 | H-1 | H-3 | H-6 | H-5 | H-2 | H-4 |
---|---|---|---|---|---|---|
δ(free β-CD) | 5.009 | 3.910 | 3.821 | 3.806 | 3.602 | 3.527 |
δ(VAA/β-CD) | 4.997 | 3.885 | 3.818 | 3.785 | 3.593 | 3.524 |
Δδ (VAA/β-CD) | -0.012 | -0.025 | -0.003 | -0.021 | -0.009 | -0.003 |
δ(free HP-β-CD) | 4.989 | 3.853 | 3.784 | 3.761 | 3.638 | 3.520 |
δ(VAA/ HP-β-CD) | 4.981 | 3.828 | 3.782 | 3.734 | 3.636 | 3.511 |
Δδ(VAA/ HP-β-CD) | -0.008 | -0.025 | -0.002 | -0.027 | -0.002 | -0.009 |
δ(free SBE-β-CD) | 4.978 | 3.880 | 3.792 | 3.768 | 3.579 | 3.497 |
δ(VAA/SBE-β-CD) | 4.966 | 3.844 | 3.783 | 3.735 | 3.565 | 3.498 |
Δδ (VAA/SBE-β-CD) | -0.012 | -0.036 | -0.009 | -0.033 | -0.014 | 0.001 |
Table 1 1H NMR chemical shift changes of β-CD, HP-β-CD, SBE-β-CD with VAA inclusion complexes
样品化学位移 | H-1 | H-3 | H-6 | H-5 | H-2 | H-4 |
---|---|---|---|---|---|---|
δ(free β-CD) | 5.009 | 3.910 | 3.821 | 3.806 | 3.602 | 3.527 |
δ(VAA/β-CD) | 4.997 | 3.885 | 3.818 | 3.785 | 3.593 | 3.524 |
Δδ (VAA/β-CD) | -0.012 | -0.025 | -0.003 | -0.021 | -0.009 | -0.003 |
δ(free HP-β-CD) | 4.989 | 3.853 | 3.784 | 3.761 | 3.638 | 3.520 |
δ(VAA/ HP-β-CD) | 4.981 | 3.828 | 3.782 | 3.734 | 3.636 | 3.511 |
Δδ(VAA/ HP-β-CD) | -0.008 | -0.025 | -0.002 | -0.027 | -0.002 | -0.009 |
δ(free SBE-β-CD) | 4.978 | 3.880 | 3.792 | 3.768 | 3.579 | 3.497 |
δ(VAA/SBE-β-CD) | 4.966 | 3.844 | 3.783 | 3.735 | 3.565 | 3.498 |
Δδ (VAA/SBE-β-CD) | -0.012 | -0.036 | -0.009 | -0.033 | -0.014 | 0.001 |
样品 | T/K | S0/mol | Slope×10-3 | K×103/(1/mol) | ΔG/(kJ/mol) | ΔH/(kJ/mol) | ΔS/(kJ/mol) |
---|---|---|---|---|---|---|---|
283 | (1.264±0.018)×10-6 | 3.333±0.026 | 2.646±0.017 | -18.543±0.016 | -82.520±0.384 | -0.226±0.001 | |
β-CD | 285 | (0.958±0.027)×10-6 | 2.08±0.004 | 2.176±0.057 | -18.210±0.063 | -82.520±0.384 | -0.226±0.002 |
288 | (1.409±0.015)×10-6 | 2.037±0.008 | 1.448±0.009 | -17.427±0.015 | -82.520±0.384 | -0.226±0.001 | |
283 | (1.175±0.014)×10-7 | 5.049±0.026 | 43.185±0.29 | -25.113±0.016 | -252.085±0.593 | -0.802±0.002 | |
HP-β-CD | 285 | (2.191±0.053)×10-7 | 5.281±0.025 | 24.242±0.47 | -23.922±0.046 | -252.085±0.593 | -0.801±0.002 |
288 | (7.731±0.128)×10-7 | 5.279±0.065 | 6.864±0.029 | -21.153±0.010 | -252.085±0.593 | -0.802±0.002 | |
283 | (1.368±0.001) ×10-6 | 5.896±0.007 | 4.337±0.007 | -19.705±0.004 | -100.383±0.270 | -0.285±0.001 | |
SBE-β-CD | 285 | (2.133±0.003)×10-6 | 5.427±0.017 | 2.646±0.017 | -18.594±0.004 | -100.383±0.270 | -0.287±0.001 |
288 | (2.651±0.011)×10-6 | 5.304±0.002 | 2.646±0.017 | -18.214±0.009 | -100.383±0.270 | -0.285±0.001 |
Table 2 Phase solubility coefficients (K) and the estimated thermodynamic quantities for formation of VAA/β-CD, VAA/HP-β-CD, VAA/SBE-β-CD at various temperatures.
样品 | T/K | S0/mol | Slope×10-3 | K×103/(1/mol) | ΔG/(kJ/mol) | ΔH/(kJ/mol) | ΔS/(kJ/mol) |
---|---|---|---|---|---|---|---|
283 | (1.264±0.018)×10-6 | 3.333±0.026 | 2.646±0.017 | -18.543±0.016 | -82.520±0.384 | -0.226±0.001 | |
β-CD | 285 | (0.958±0.027)×10-6 | 2.08±0.004 | 2.176±0.057 | -18.210±0.063 | -82.520±0.384 | -0.226±0.002 |
288 | (1.409±0.015)×10-6 | 2.037±0.008 | 1.448±0.009 | -17.427±0.015 | -82.520±0.384 | -0.226±0.001 | |
283 | (1.175±0.014)×10-7 | 5.049±0.026 | 43.185±0.29 | -25.113±0.016 | -252.085±0.593 | -0.802±0.002 | |
HP-β-CD | 285 | (2.191±0.053)×10-7 | 5.281±0.025 | 24.242±0.47 | -23.922±0.046 | -252.085±0.593 | -0.801±0.002 |
288 | (7.731±0.128)×10-7 | 5.279±0.065 | 6.864±0.029 | -21.153±0.010 | -252.085±0.593 | -0.802±0.002 | |
283 | (1.368±0.001) ×10-6 | 5.896±0.007 | 4.337±0.007 | -19.705±0.004 | -100.383±0.270 | -0.285±0.001 | |
SBE-β-CD | 285 | (2.133±0.003)×10-6 | 5.427±0.017 | 2.646±0.017 | -18.594±0.004 | -100.383±0.270 | -0.287±0.001 |
288 | (2.651±0.011)×10-6 | 5.304±0.002 | 2.646±0.017 | -18.214±0.009 | -100.383±0.270 | -0.285±0.001 |
样品 | 溶解度/(g/100 g) |
---|---|
Free VAA | 1.9×10-4 |
VAA/β-CD | 0.85±0.05 |
VAA/HP-β-CD | 100±0.04 |
VAA/SBE-β-CD | 1.48±0.05 |
Table 3 Water solubility of free VAA and VAA/β-CD, VAA/HP-β-CD, VAA/SBE-β-CD
样品 | 溶解度/(g/100 g) |
---|---|
Free VAA | 1.9×10-4 |
VAA/β-CD | 0.85±0.05 |
VAA/HP-β-CD | 100±0.04 |
VAA/SBE-β-CD | 1.48±0.05 |
1 | Gianeti M D, Gaspar L R, de Camargo F B, et al. Benefits of combinations of Vitamin A, C and E derivatives in the stability of cosmetic formulations[J]. Molecules, 2012, 17(2): 2219-2230. |
2 | Sachdeva B, Kaushik R, Arora S, et al. Effect of processing conditions on the stability of native Vitamin A and fortified retinol acetate in milk[J]. International Journal for Vitamin and Nutrition Research, 2021, 91(1/2): 133-142. |
3 | Zhou J J, Jia J L, He J L, et al. Cyclodextrin inclusion complexes and their application in food safety analysis: recent developments and future prospects[J]. Foods, 2022, 11(23): 3871. |
4 | Nowak J K, Sobkowiak P, Drzymała-Czyż S, et al. Fat-soluble vitamin supplementation using liposomes, cyclodextrins, or medium-chain triglycerides in cystic fibrosis: a randomized controlled trial[J]. Nutrients, 2021, 13(12): 4554. |
5 | de Melo C G, da Costa L A G, Rabello M M, et al. Enhanced solubility of albendazole in cyclodextrin inclusion complex: a molecular modeling approach and physicochemical evaluation[J]. Current Drug Delivery, 2022, 19(1): 86-92. |
6 | Aman A, Ali S, Mahalapbutr P, et al. Enhancing solubility and stability of sorafenib through cyclodextrin-based inclusion complexation: in silico and in vitro studies[J]. RSC Advances, 2023, 13(39): 27244-27254. |
7 | Li Q, Pu H Y, Tang P X, et al. Propyl gallate/cyclodextrin supramolecular complexes with enhanced solubility and radical scavenging capacity[J]. Food Chemistry, 2018, 245: 1062-1069. |
8 | Biernacka M, Ilyich T, Zavodnik I, et al. Studies of the formation and stability of ezetimibe-cyclodextrin inclusion complexes[J]. International Journal of Molecular Sciences, 2021, 23(1): 455. |
9 | Lin H S, Leong W W Y, Yang J A, et al. Biopharmaceutics of 13-cis-retinoic acid (isotretinoin) formulated with modified beta-cyclodextrins[J]. International Journal of Pharmaceutics, 2007, 341(1/2): 238-245. |
10 | Yap K L, Liu X, Thenmozhiyal J C, et al. Characterization of the 13-cis-retinoic acid/cyclodextrin inclusion complexes by phase solubility, photostability, physicochemical and computational analysis[J]. European Journal of Pharmaceutical Sciences: Official Journal of the European Federation for Pharmaceutical Sciences, 2005, 25(1): 49-56. |
11 | Higuchi T A, Connors K A. Phase-Solubility Techniques[M]. New York: Interscience, 1965. |
12 | Fateminasab F, Bordbar A K, Shityakov S, et al. Diadzein complexation with unmodified cyclodextrins: a detailed experimental and theoretical study[J]. Journal of Molecular Liquids, 2018, 271: 80-95. |
13 | 吴海波, 方岩雄, 纪红兵. 助溶剂促进的β-环糊精与肉桂醛的包结性能[J]. 化工学报, 2011, 62(S1): 168-173. |
Wu H B, Fang Y X, Ji H B. Inclusion properties of β-cyclodextrin with cinnamaldehyde promoted by cosolvent[J]. CIESC Journal, 2011, 62(S1): 168-173. | |
14 | 姚培培, 樊金玲, 李德锋, 等. 光甘草定/环糊精固体包合物的制备和性质[J]. 食品科学, 2022, 43(16): 9-18. |
Yao P P, Fan J L, Li D F, et al. Preparation and characterization of glabridin/cyclodextrin solid inclusion complex[J]. Food Science, 2022, 43(16): 9-18. | |
15 | Ntountaniotis D, Leonis G, Christodoulou E, et al. Applications of NMR in drug: cyclodextrin complexes[J]. Methods in Molecular Biology, 2021, 2207: 313-325. |
16 | Szabó Z I, Ludmerczki R, Fiser B, et al. Chiral separation of rasagiline using s u l f o b u t y l e t h e r - β - c y c l o d e x t r i n : capillary electrophoresis, NMR and molecular modeling study[J]. Electrophoresis, 2019, 40(15): 1897-1903. |
17 | Betlejewska-Kielak K, Bednarek E, Budzianowski A, et al. Comprehensive characterisation of the ketoprofen-β-cyclodextrin inclusion complex using X-ray techniques and NMR spectroscopy[J]. Molecules, 2021, 26(13): 4089. |
18 | 高珊, 徐磊, 王心, 等. 薏米麸皮多酚-β-环糊精包合物特性研究[J]. 中国食品学报, 2022, 22(6): 117-124. |
Gao S, Xu L, Wang X, et al. Stuides on characterization of inclusion complex of adlay bran polyphenols with β-cyclodextrin[J]. Journal of Chinese Institute of Food Science and Technology, 2022, 22(6): 117-124. | |
19 | Giri B R, Lee J, Lim D Y, et al. Docetaxel/dimethyl-β- cyclodextrin inclusion complexes: preparation, in vitro evaluation and physicochemical characterization[J]. Drug Development and Industrial Pharmacy, 2021, 47(2): 319-328. |
20 | Xu X H, Peng S Y, Bao G K, et al. β-Cyclodextrin inclusion complexes with Vitamin A and its esters: a comparative experimental and molecular modeling study[J]. Journal of Molecular Structure, 2021, 1223: 129001. |
21 | Celebioglu A, Uyar T. Design of polymer-free Vitamin-A acetate/cyclodextrin nanofibrous webs: antioxidant and fast-dissolving properties[J]. Food & Function, 2020, 11(9): 7626-7637. |
22 | Carlotti M E, Rossatto V, Gallarate M. Vitamin A and Vitamin A palmitate stability over time and under UVA and UVB radiation[J]. International Journal of Pharmaceutics, 2002, 240(1/2): 85-94. |
23 | Wang F, Yu W B, Popesceu C, et al. Cholecalciferol complexation with hydroxypropyl-β-cyclodextrin (HPBCD) and its molecular dynamics simulation[J]. Pharmaceutical Development and Technology, 2022, 27(4): 389-398. |
24 | Zhu G Y, Xiao Z B, Zhu G X. Fabrication and characterization of ethyl acetate-hydroxypropyl-β-cyclodextrin inclusion complex[J]. Journal of Food Science, 2021, 86(8): 3589-3597. |
25 | Vilanova N, Solans C. Vitamin A Palmitate-β-cyclodextrin inclusion complexes: characterization, protection and emulsification properties[J]. Food Chemistry, 2015, 175: 529-535. |
26 | Sid D, Baitiche M, Elbahri Z, et al. Solubility enhancement of mefenamic acid by inclusion complex with β-cyclodextrin: in silico modelling, formulation, characterisation, and invitro studies[J]. Journal of Enzyme Inhibition and Medicinal Chemistry, 2021, 36(1): 605-617. |
27 | Patil S M, Barji D S, Chavan T, et al. Solubility enhancement and inhalation delivery of cyclodextrin-based inclusion complex of delamanid for pulmonary tuberculosis treatment[J]. AAPS PharmSciTech, 2023, 24(1): 49. |
28 | Loh G O K, Tan Y T F, Peh K K. Enhancement of norfloxacin solubility via inclusion complexation with β-cyclodextrin and its derivative hydroxypropyl-β-cyclodextrin[J]. Asian Journal of Pharmaceutical Sciences, 2016, 11(4): 536-546. |
29 | Zhong Y Y, Li W H, Ran L D, et al. Inclusion complexes of tea polyphenols with H P - β - c y c l o d e x t r i n : preparation, characterization, molecular docking, and antioxidant activity[J]. Journal of Food Science, 2020, 85(4): 1105-1113. |
30 | Chang C K, Song M, Ma M X, et al. Preparation, characterization and molecular dynamics simulation of rutin-cyclodextrin inclusion complexes[J]. Molecules, 2023, 28(3): 955. |
[1] | Huanjuan ZHAO, Yingxin BAO, Kang YU, Jing LIU, Xinming QIAN. Quantitative experimental study on detonation instability of multi-component [J]. CIESC Journal, 2024, 75(S1): 339-348. |
[2] | Haoyu WANG, Yang YANG, Wenjie JING, Bin YANG, Yu TANG, Yi LIU. Study on characteristics of gas-liquid spiral annular flow under action by different swirlers [J]. CIESC Journal, 2024, 75(8): 2744-2755. |
[3] | Zheming WU, Biyun ZHANG, Renchao ZHENG. Engineering of nitrilase enantioselectivity for efficient synthesis of brivaracetam [J]. CIESC Journal, 2024, 75(7): 2633-2643. |
[4] | Zhixing ZHAO, Zhihao YAO, Xuefeng YU, Yousheng YANG, Ying ZENG, Xudong YU. Multi-temperature phase diagram of lithium-sodium-magnesium coexistence sulfate system and its application [J]. CIESC Journal, 2024, 75(6): 2123-2133. |
[5] | Jing LI, Fangfang ZHANG, Shuaishuai WANG, Jianhua XU, Pengyuan ZHANG. Effect of cavity structure on flammability limit of n-butane partially premixed flame [J]. CIESC Journal, 2024, 75(5): 2081-2090. |
[6] | Hansong QIN, Guoliang LI, Hao YAN, Xiang FENG, Yibin LIU, Xiaobo CHEN, Chaohe YANG. Theoretical study on the adsorption and diffusion behavior of methyl oleate catalytic cracking in hierarchical ZSM-5 zeolite [J]. CIESC Journal, 2024, 75(5): 1870-1881. |
[7] | Youming SI, Lingfeng ZHENG, Pengzhong CHEN, Jiangli FAN, Xiaojun PENG. Performance and mechanism of novel antimony oxo cluster photoresist [J]. CIESC Journal, 2024, 75(4): 1705-1717. |
[8] | Dongfei LIU, Fan ZHANG, Zheng LIU, Diannan LU. A review of machine learning potentials and their applications to molecular simulation [J]. CIESC Journal, 2024, 75(4): 1241-1255. |
[9] | Zheng ZHANG, Wuqiong WANG, Yajing ZHANG, Kangjun WANG, Yuanhui JI. Research progress in theoretical calculation of pharmaceutical formulation design [J]. CIESC Journal, 2024, 75(4): 1429-1438. |
[10] | Zhouyang SHEN, Kang XUE, Qing LIU, Chengxiang SHI, Jijun ZOU, Xiangwen ZHANG, Lun PAN. Research progress on endothermic nanofluid fuels [J]. CIESC Journal, 2024, 75(4): 1167-1182. |
[11] | Kang ZHOU, Jianxin WANG, Hai YU, Chaoliang WEI, Fengqi FAN, Xinhao CHE, Lei ZHANG. Foam rupture properties of mineral base oils based on molecular dynamics simulation [J]. CIESC Journal, 2024, 75(4): 1668-1678. |
[12] | Haoqi CHEN, Bohui SHI, Qi PENG, Qi KANG, Shangfei SONG, Haiyuan YAO, Haihong CHEN, Haihao WU, Jing GONG. Phase equilibrium calculation of acid/alcohol hydrocarbon and water system based on stability analysis [J]. CIESC Journal, 2024, 75(3): 789-800. |
[13] | Yuxiang CHEN, Chuanlei LIU, Zijun GONG, Qiyue ZHAO, Guanchu GUO, Hao JIANG, Hui SUN, Benxian SHEN. Machine learning-assisted solvent molecule design for efficient absorption of ethanethiol [J]. CIESC Journal, 2024, 75(3): 914-923. |
[14] | Fan WU, Xudong PENG, Jinbo JIANG, Xiangkai MENG, Yangyang LIANG. Study on adaptability of molecular dynamics in predicting density and viscosity of natural gas [J]. CIESC Journal, 2024, 75(2): 450-462. |
[15] | Zhiyi YU, Junyan FANG, Wenyao CHEN, Gang QIAN, Xuezhi DUAN. Regulation of Pt-Bi interfaces for selective catalytic oxidation of glycerol [J]. CIESC Journal, 2024, 75(10): 3568-3578. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 87
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 77
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||