CIESC Journal ›› 2025, Vol. 76 ›› Issue (11): 5544-5553.DOI: 10.11949/0438-1157.20250396
• Special Column: Multiphase Flow and Heat Transfer in Energy Utilization Processes • Previous Articles Next Articles
Yuhuan LEI(
), Qiuyang ZHAO, Yu DONG, Yanlong ZHANG, Liejin GUO(
)
Received:2025-04-15
Revised:2025-07-06
Online:2025-12-19
Published:2025-11-25
Contact:
Liejin GUO
通讯作者:
郭烈锦
作者简介:雷宇寰(1997—),男,博士研究生,leiyuhuan@stu.xjtu.edu.cn
基金资助:CLC Number:
Yuhuan LEI, Qiuyang ZHAO, Yu DONG, Yanlong ZHANG, Liejin GUO. Kinetic study of heavy oil upgrading reaction in supercritical water[J]. CIESC Journal, 2025, 76(11): 5544-5553.
雷宇寰, 赵秋阳, 董宇, 张延龙, 郭烈锦. 超临界水稠油改质反应动力学研究[J]. 化工学报, 2025, 76(11): 5544-5553.
Add to citation manager EndNote|Ris|BibTeX
| 模型参数 | 参数值 |
|---|---|
| 模型截面积/cm2 | 12.57 |
| 模型长度/cm | 43 |
| 网格块尺寸/cm | 0.709×0.709×1.075 |
| 孔隙度/% | 46.43 |
| 渗透率/mD | 2330 |
| 岩石热导率/(J/(m∙d∙℃)) | 1.496×105 |
| 岩石热容/(J/(m3∙℃)) | 2.607×106 |
| 水相热导率/(J/(m∙d∙℃)) | 5.35×104 |
| 油相热导率/(J/(m∙d∙℃)) | 1.15×104 |
| 气相热导率/(J/(m∙d∙℃)) | 1900 |
| 油藏初始温度/℃ | 150 |
| 油藏初始压力/MPa | 7 |
| 注入温度/℃ | 380, 400, 420 |
| 生产井井底压力/MPa | 25 |
| 注入速率/(ml/min) | 3 |
Table 1 Main parameters of reservoir simulation model
| 模型参数 | 参数值 |
|---|---|
| 模型截面积/cm2 | 12.57 |
| 模型长度/cm | 43 |
| 网格块尺寸/cm | 0.709×0.709×1.075 |
| 孔隙度/% | 46.43 |
| 渗透率/mD | 2330 |
| 岩石热导率/(J/(m∙d∙℃)) | 1.496×105 |
| 岩石热容/(J/(m3∙℃)) | 2.607×106 |
| 水相热导率/(J/(m∙d∙℃)) | 5.35×104 |
| 油相热导率/(J/(m∙d∙℃)) | 1.15×104 |
| 气相热导率/(J/(m∙d∙℃)) | 1900 |
| 油藏初始温度/℃ | 150 |
| 油藏初始压力/MPa | 7 |
| 注入温度/℃ | 380, 400, 420 |
| 生产井井底压力/MPa | 25 |
| 注入速率/(ml/min) | 3 |
| 反应路径 | 反应速率常数kij /min-1 | 指前因子A/min-1 | 活化能E/(J/mol) | 决定系数R2 | ||
|---|---|---|---|---|---|---|
| 380℃ | 400℃ | 420℃ | ||||
| K12 | 1.86×10-3 | 2.45×10-3 | 3.33×10-3 | 2.67×1036 | 5.48×104 | 0.9973 |
| K21 | 5.64×10-4 | 2.57×10-3 | 6.12×10-3 | 1.65×1033 | 2.25×105 | 0.9810 |
| K23 | 1.33×10-3 | 2.25×10-3 | 5.65×10-3 | 1.08×1020 | 1.35×105 | 0.9692 |
| K32 | 7.03×10-4 | 3.76×10-3 | 9.15×10-3 | 4.90×1018 | 2.42×105 | 0.9750 |
| K34 | 1.43×10-3 | 2.43×10-3 | 4.01×10-3 | 1.82×1016 | 9.69×104 | 1.0000 |
| K43 | 4.91×10-3 | 1.13×10-2 | 5.19×10-2 | 2.11×1015 | 2.21×105 | 0.9663 |
| K15 | 2.37×10-4 | 3.38×10-4 | 4.73×10-4 | 6.10×1014 | 6.52×104 | 1.0000 |
| K45 | 4.21×10-3 | 1.31×10-2 | 8.41×10-2 | 1.10×1014 | 2.81×105 | 0.9760 |
| K42 | 2.63×10-4 | 2.96×10-3 | 3.51×10-2 | 8.45×107 | 4.60×105 | 0.9995 |
| K41 | 4.27×10-3 | 8.57×10-3 | 3.84×10-2 | 6.42×105 | 2.06×105 | 0.9503 |
| K31 | 1.76×10-5 | 2.52×10-4 | 4.22×10-3 | 8.03×104 | 5.15×105 | 0.9988 |
| K13 | 1.02×10-3 | 2.33×10-3 | 3.24×10-3 | 4.45×101 | 1.10×105 | 0.9502 |
| K46 | 2.14×10-2 | 5.19×10-2 | 3.27×10-1 | 3.89×101 | 2.55×105 | 0.9535 |
Table 2 Parameters of reaction kinetic model
| 反应路径 | 反应速率常数kij /min-1 | 指前因子A/min-1 | 活化能E/(J/mol) | 决定系数R2 | ||
|---|---|---|---|---|---|---|
| 380℃ | 400℃ | 420℃ | ||||
| K12 | 1.86×10-3 | 2.45×10-3 | 3.33×10-3 | 2.67×1036 | 5.48×104 | 0.9973 |
| K21 | 5.64×10-4 | 2.57×10-3 | 6.12×10-3 | 1.65×1033 | 2.25×105 | 0.9810 |
| K23 | 1.33×10-3 | 2.25×10-3 | 5.65×10-3 | 1.08×1020 | 1.35×105 | 0.9692 |
| K32 | 7.03×10-4 | 3.76×10-3 | 9.15×10-3 | 4.90×1018 | 2.42×105 | 0.9750 |
| K34 | 1.43×10-3 | 2.43×10-3 | 4.01×10-3 | 1.82×1016 | 9.69×104 | 1.0000 |
| K43 | 4.91×10-3 | 1.13×10-2 | 5.19×10-2 | 2.11×1015 | 2.21×105 | 0.9663 |
| K15 | 2.37×10-4 | 3.38×10-4 | 4.73×10-4 | 6.10×1014 | 6.52×104 | 1.0000 |
| K45 | 4.21×10-3 | 1.31×10-2 | 8.41×10-2 | 1.10×1014 | 2.81×105 | 0.9760 |
| K42 | 2.63×10-4 | 2.96×10-3 | 3.51×10-2 | 8.45×107 | 4.60×105 | 0.9995 |
| K41 | 4.27×10-3 | 8.57×10-3 | 3.84×10-2 | 6.42×105 | 2.06×105 | 0.9503 |
| K31 | 1.76×10-5 | 2.52×10-4 | 4.22×10-3 | 8.03×104 | 5.15×105 | 0.9988 |
| K13 | 1.02×10-3 | 2.33×10-3 | 3.24×10-3 | 4.45×101 | 1.10×105 | 0.9502 |
| K46 | 2.14×10-2 | 5.19×10-2 | 3.27×10-1 | 3.89×101 | 2.55×105 | 0.9535 |
| 产油参数 | 实验值 | 模拟值 | 误差/% |
|---|---|---|---|
| 采收率/% | 93.43 | 94.98 | 1.55 |
| 产物质量分数/% | |||
| 石脑油 | 1.76 | 1.65 | 0.11 |
| 常压瓦斯油 | 13.35 | 12.32 | 1.03 |
| 减压瓦斯油 | 24.82 | 25.44 | 0.62 |
| 减压渣油 | 60.07 | 60.59 | 0.52 |
Table 3 Comparison of laboratory oil displacement experimental data and calculation of numerical reservoir model
| 产油参数 | 实验值 | 模拟值 | 误差/% |
|---|---|---|---|
| 采收率/% | 93.43 | 94.98 | 1.55 |
| 产物质量分数/% | |||
| 石脑油 | 1.76 | 1.65 | 0.11 |
| 常压瓦斯油 | 13.35 | 12.32 | 1.03 |
| 减压瓦斯油 | 24.82 | 25.44 | 0.62 |
| 减压渣油 | 60.07 | 60.59 | 0.52 |
| [1] | 樊大磊, 王宗礼, 李剑, 等. 2023年国内外油气资源形势分析及展望[J]. 中国矿业, 2024, 33(1): 30-37. |
| Fan D L, Wang Z L, Li J, et al. Analysis of domestic and international oil and gas resources situation in 2023 and outlook[J]. China Mining Magazine, 2024, 33(1): 30-37. | |
| [2] | 尹诗琪. 非常规油气资源评价方法及社会效益评价[J]. 自动化应用, 2023, 64(6): 7-9. |
| Yin S Q. Unconventional oil and gas resources evaluation method and social benefit evaluation[J]. Automation Application, 2023, 64(6): 7-9. | |
| [3] | 胡文瑞, 翟光明, 李景明. 中国非常规油气的潜力和发展[J]. 中国工程科学, 2010, 12(5): 25-29, 63. |
| Hu W R, Zhai G M, Li J M. Potential and development of unconventional hydrocarbon resources in China[J]. Engineering Sciences, 2010, 12(5): 25-29, 63. | |
| [4] | Siavashi M, Doranehgard M H. Particle swarm optimization of thermal enhanced oil recovery from oilfields with temperature control[J]. Applied Thermal Engineering, 2017, 123: 658-669. |
| [5] | Shah A, Fishwick R, Wood J, et al. A review of novel techniques for heavy oil and bitumen extraction and upgrading[J]. Energy & Environmental Science, 2010, 3(6): 700-714. |
| [6] | 杨玉忠. 鲁克沁油田35兆帕超临界注汽的试验与应用[J]. 中国石油和化工标准与质量, 2012, 32(1): 148-149. |
| Yang Y Z. Test and application of 35 MPa supercritical steam injection in Lukeqin Oilfield[J]. China Petroleum and Chemical Standard and Quality, 2012, 32(1): 148-149. | |
| [7] | Zhao Q Y, Guo L J, Huang Z J, et al. Experimental investigation on enhanced oil recovery of extra heavy oil by supercritical water flooding[J]. Energy & Fuels, 2018, 32(2): 1685-1692. |
| [8] | Zhao Q Y, Guo L J, Wang Y C, et al. Enhanced oil recovery and in situ upgrading of heavy oil by supercritical water injection[J]. Energy & Fuels, 2020, 34(1): 360-367. |
| [9] | Huang Z J, Zhao Q Y, Chen L, et al. Experimental investigation of enhanced oil recovery and in-situ upgrading of heavy oil via CO2- and N2-assisted supercritical water flooding[J]. Chemical Engineering Science, 2023, 268: 118378. |
| [10] | Miao Y, Zhao Q Y, Huang Z J, et al. Core flooding experimental study on enhanced oil recovery of heavy oil reservoirs with high water cut by sub- and supercritical water[J]. Geoenergy Science and Engineering, 2024, 242: 213208. |
| [11] | Canıaz R O, Erkey C. Process intensification for heavy oil upgrading using supercritical water[J]. Chemical Engineering Research and Design, 2014, 92(10): 1845-1863. |
| [12] | Sun X F, Li X Y, Tan X H, et al. Pyrolysis of heavy oil in supercritical multi-thermal fluid: an effective recovery agent for heavy oils[J]. Journal of Petroleum Science and Engineering, 2021, 196: 107784. |
| [13] | Félix G, Tirado A, Al-Muntaser A, et al. Catalytic mechanism and kinetics[M]// Catalytic In-Situ Upgrading of Heavy and Extra-Heavy Crude Oils. American: John Wiley & Sons Ltd., 2023. |
| [14] | 姚宏哲, 黄飞宇, 杨松, 等. 重质油高温快速热解自动反应网络的动力学建模[J]. 化工学报, 2024, 75(7): 2644-2655. |
| Yao H Z, Huang F Y, Yang S, et al. Kinetic modeling of the high-temperature rapid pyrolysis auto-reaction network of heavy oil[J]. CIESC Journal, 2024, 75(7): 2644-2655. | |
| [15] | 刘宗鹏, 胡少剑, 张宇宁, 等. 复合型多元醇酯合成反应的热力学分析及动力学研究[J]. 化工学报, 2023, 74(11): 4475-4486. |
| Liu Z P, Hu S J, Zhang Y N, et al. Thermodynamic analysis and kinetics study on synthesis reaction of complex polyolester[J]. CIESC Journal, 2023, 74(11): 4475-4486. | |
| [16] | Zhang D X, Ren Z, Wang D, et al. Upgrading of crude oil in supercritical water: a five-lumped kinetic model[J]. Journal of Analytical and Applied Pyrolysis, 2017, 123: 56-64. |
| [17] | Gudiyella S, Lai L, Borne I H, et al. An experimental and modeling study of vacuum residue upgrading in supercritical water[J]. AIChE Journal, 2018, 64(5): 1732-1743. |
| [18] | Tan X C, Liu Q K, Zhu D Q, et al. Pyrolysis of heavy oil in the presence of supercritical water: the reaction kinetics in different phases[J]. AIChE Journal, 2015, 61(3): 857-866. |
| [19] | Liu Q K, Zhu D Q, Tan X C, et al. Lumped reaction kinetic models for pyrolysis of heavy oil in the presence of supercritical water[J]. AIChE Journal, 2016, 62(1): 207-216. |
| [20] | Tirado A, Félix G, Zhou X D, et al. Study of heavy crude oil upgrading in supercritical water using diverse kinetic approaches[J]. Geoenergy Science and Engineering, 2024, 241: 213161. |
| [21] | Sim S, Kong W B, Kim J, et al. Kinetics of extra-heavy oil upgrading in supercritical water with and without zinc nitrate using the phase separation kinetic model[J]. The Journal of Supercritical Fluids, 2020, 165: 104961. |
| [22] | Raghavan A, He P, Ghoniem A F. Inference of reaction kinetics for supercritical water heavy oil upgrading with a two-phase stirred reactor model[J]. AIChE Journal, 2022, 68(2): e17488. |
| [23] | Wiehe I A. A phase-separation kinetic model for coke formation[J]. Industrial & Engineering Chemistry Research, 1993, 32(11): 2447-2454. |
| [24] | Dong Y, Zhao Q Y, Zhou Y T, et al. Kinetic study of asphaltenes phase separation in supercritical water upgrading of heavy oil[J]. Fuel Processing Technology, 2023, 241: 107588. |
| [25] | Félix G, Djimasbe R, Tirado A, et al. Kinetic study for the Ashalcha heavy crude oil upgrading at supercritical water conditions[J]. Fuel, 2025, 380: 133145. |
| [26] | Tan X H, Zheng W, Wang T C, et al. The supercritical multithermal fluid flooding investigation: experiments and numerical simulation for deep offshore heavy oil reservoirs[J]. Geofluids, 2021, 2021: 5589543. |
| [27] | Fu Q, Zhu Z Y, Li J J, et al. Numerical reservoir simulation of supercritical multi-source and multi-component steam injection for offshore heavy oil development[J]. Processes, 2024, 12(1): 216. |
| [28] | Zhang Y Y, Li X Y, Sun X F, et al. Experimental and numerical studies of supercritical water flooding for offshore heavy oil recovery[J]. Geofluids, 2022, 2022: 5362235. |
| [29] | Ma H M, Yang Y, Chen Z X. Numerical simulation of bitumen recovery via supercritical water injection with in-situ upgrading[J]. Fuel, 2022, 313: 122708. |
| [30] | Askarova A, Turakhanov A, Markovic S, et al. Thermal enhanced oil recovery in deep heavy oil carbonates: experimental and numerical study on a hot water injection performance[J]. Journal of Petroleum Science and Engineering, 2020, 194: 107456. |
| [31] | Xu T, Liu Q Y, Liu Z Y, et al. The role of supercritical water in pyrolysis of carbonaceous compounds[J]. Energy & Fuels, 2013, 27(6): 3148-3153. |
| [32] | Cheng Z M, Ding Y, Zhao L Q, et al. Effects of supercritical water in vacuum residue upgrading[J]. Energy & Fuels, 2009, 23(6): 3178-3183. |
| [33] | Morimoto M, Sugimoto Y, Sato S, et al. Solvent effect of water on supercritical water treatment of heavy oil[J]. Journal of the Japan Petroleum Institute, 2014, 57(1): 11-17. |
| [34] | Tan X C, Zhu C C, Liu Q K, et al. Co-pyrolysis of heavy oil and low density polyethylene in the presence of supercritical water: the suppression of coke formation[J]. Fuel Processing Technology, 2014, 118: 49-54. |
| [35] | Li N, Yan B, Xiao X M. A review of laboratory-scale research on upgrading heavy oil in supercritical water[J]. Energies, 2015, 8(8): 8962-8989. |
| [36] | Zhu D Q, Liu Q K, Tan X C, et al. Structural characteristics of asphaltenes derived from condensation of maltenes in supercritical water[J]. Energy & Fuels, 2015, 29(12): 7807-7815. |
| [37] | Ancheyta J, Sánchez S, Rodríguez M A. Kinetic modeling of hydrocracking of heavy oil fractions: a review[J]. Catalysis Today, 2005, 109(1/2/3/4): 76-92. |
| [38] | Ahmed W K. Advantages and disadvantages of using MATLAB/ode45 for solving differential equations in engineering applications[J]. International Journal of Engineering, 2013, 7(1): 25-31. |
| [39] | Zhang Y L, Zhao Q Y, Lei Y H, et al. Kinetics study on supercritical water conversion of low-maturity shale for hydrogen-rich hydrocarbon gas generation[J]. Journal of Analytical and Applied Pyrolysis, 2024, 181: 106604. |
| [40] | He H F, Li Q, Zheng H R, et al. Simulation and evaluation on enhanced oil recovery for steam huff and puff during the later phase in heavy oil reservoir—a case study of block G in Liaohe oilfield, China[J]. Journal of Petroleum Science and Engineering, 2022, 219: 111092. |
| [41] | Zheng Y, Lei G L, Yao C J, et al. A calculation model about reservoir thermal efficiency of in-situ upgrading for oil shale via steam injection[J]. Journal of Petroleum Science and Engineering, 2020, 192: 107267. |
| [1] | Zixiang ZHAO, Zhongdi DUAN, Haoran SUN, Hongxiang XUE. Numerical modelling of water hammer induced by two phase flow with large temperature difference [J]. CIESC Journal, 2025, 76(S1): 170-180. |
| [2] | Hao HUANG, Wen WANG, Longkun HE. Simulation and analysis on precooling process of membrane LNG carriers [J]. CIESC Journal, 2025, 76(S1): 187-194. |
| [3] | Siyuan WANG, Guoqiang LIU, Tong XIONG, Gang YAN. Characteristics of non-uniform wind velocity distribution in window air conditioner axial fans and their impact on optimizing condenser circuit optimization [J]. CIESC Journal, 2025, 76(S1): 205-216. |
| [4] | Qingtai CAO, Songyuan GUO, Jianqiang LI, Zan JIANG, Bin WANG, Rui ZHUAN, Jingyi WU, Guang YANG. Numerical study on influence of perforated plate on retention performance of liquid oxygen tank under negative gravity [J]. CIESC Journal, 2025, 76(S1): 217-229. |
| [5] | Jiuchun SUN, Yunlong SANG, Haitao WANG, Hao JIA, Yan ZHU. Study on influence of jet flow on slurry transport characteristics in slurry chamber of shield tunneling machines [J]. CIESC Journal, 2025, 76(S1): 246-257. |
| [6] | Ting HE, Shuyang HUANG, Kun HUANG, Liqiong CHEN. Research on the coupled process of natural gas chemical absorption decarbonization and high temperature heat pump based on waste heat utilization [J]. CIESC Journal, 2025, 76(S1): 297-308. |
| [7] | Haolei DUAN, Haoyuan CHEN, Kunfeng LIANG, Lin WANG, Bin CHEN, Yong CAO, Chenguang ZHANG, Shuopeng LI, Dengyu ZHU, Yaru HE, Dapeng YANG. Performance analysis and comprehensive evaluation of thermal management system schemes with low GWP refrigerants [J]. CIESC Journal, 2025, 76(S1): 54-61. |
| [8] | Junpeng WANG, Jiaqi FENG, Enbo ZHANG, Bofeng BAI. Study on flow and cavitation characteristic in zigzag and array labyrinth valve core structures [J]. CIESC Journal, 2025, 76(S1): 93-105. |
| [9] | Lian DUAN, Xingrui ZHOU, Wenjun YUAN, Fei CHEN. Effects of continuous phase velocity pulsations on the formation and morphology of polymer droplets in microchannels [J]. CIESC Journal, 2025, 76(9): 4578-4585. |
| [10] | Sheng CHEN, Zizheng LI, Chao MIAO, Xuegang BAI, Fei LI, Jiaxuan LIU, Tiantian LI, Shuang YANG, Rongrong LYU, Jiangyun WANG. Three-dimensional CFD simulation of non-uniform diffusion characteristic of high-risk chlorine gas in large-scale dense scene [J]. CIESC Journal, 2025, 76(9): 4630-4643. |
| [11] | Yiyang LIU, Zhixiang XING, Yecheng LIU, Ming PENG, Yuyang LI, Yunhao LI, Ningzhou SHEN. Numerical simulation study on the leakage diffusion characteristics and safety monitoring of liquid hydrogen in hydrogen refueling stations [J]. CIESC Journal, 2025, 76(9): 4694-4708. |
| [12] | Zhengzong HUANG, Kecheng LIU, Zefang LI, Pingsheng ZENG, YongFu LIU, Hongjie YAN, Liu LIU. Numerical simulation and field synergy optimization of brick-built heat exchange chamber in zinc refining furnace [J]. CIESC Journal, 2025, 76(9): 4425-4439. |
| [13] | Kaiyuan YANG, Xizhong CHEN. Comparison of discrete element method and finite-discrete element method for simulation of agglomerate breakage [J]. CIESC Journal, 2025, 76(9): 4398-4411. |
| [14] | Zhiyong JIA, Xiankun SHEN, Xiaocheng LAN, Tiefeng WANG. CFD-DEM simulation of effects of gas density on pressurized fluidization [J]. CIESC Journal, 2025, 76(9): 4383-4397. |
| [15] | Yifei WANG, Yuxing LI, Xin OUYANG, Xuefeng ZHAO, Lan MENG, Qihui HU, Buze YIN, Yaqi GUO. Numerical calculation of CO2 pipeline fracture propagation based on crack tip decompression characteristics [J]. CIESC Journal, 2025, 76(9): 4683-4693. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||