CIESC Journal ›› 2025, Vol. 76 ›› Issue (10): 5057-5066.DOI: 10.11949/0438-1157.20250460
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Botao WANG(
), Wei LU(
), Rui QIN
Received:2025-04-30
Revised:2025-08-24
Online:2025-11-25
Published:2025-10-25
Contact:
Wei LU
通讯作者:
卢苇
作者简介:王博韬(1990—),男,硕士,2750711630@qq.com
基金资助:CLC Number:
Botao WANG, Wei LU, Rui QIN. A simulation investigation of thermal transpiration phenomenon at high Knudsen numbers by improved LBM-BGK equation[J]. CIESC Journal, 2025, 76(10): 5057-5066.
王博韬, 卢苇, 覃睿. 基于改进LBM-BGK方程的高Knudsen数热流逸现象模拟研究[J]. 化工学报, 2025, 76(10): 5057-5066.
Add to citation manager EndNote|Ris|BibTeX
| [1] | Reynolds O. On certain dimensional properties of matter in the gaseous state[J]. Philosophical Transactions of the Royal Society of London, 1879, 170: 727-845. |
| [2] | Muntz E P, Sone Y, Aoki K, et al. Performance analysis and optimization considerations for a Knudsen compressor in transitional flow[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2002, 20(1): 214-224. |
| [3] | Kugimoto K, Hirota Y, Yamauchi T, et al. A novel heat pump system using a multi-stage Knudsen compressor[J]. International Journal of Heat and Mass Transfer, 2018, 127: 84-91. |
| [4] | Vargo S E, Muntz E P. Initial results from the first MEMS fabricated thermal transpiration-driven vacuum pump[C]// AIP Conference Proceedings. New York: American Institute of Physics, 2001, 585(1): 502-509. |
| [5] | Zhang W J, Lu W, Wang B T. Performance analysis of a novel thermal transpiration vacuum cooling system[J]. International Journal of Green Energy, 2022, 19(2): 149-158. |
| [6] | An S, Gupta N K, Gianchandani Y B. A Si-micromachined 162-stage two-part Knudsen pump for on-chip vacuum[J]. Journal of Microelectromechanical Systems, 2014, 23(2): 406-416. |
| [7] | Lotfian A, Roohi E. Binary gas mixtures separation using microscale radiometric pumps[J]. International Communications in Heat and Mass Transfer, 2021, 121: 105061. |
| [8] | Baier T, Hardt S. Gas separation in a Knudsen pump inspired by a Crookes radiometer[J]. Microfluidics and Nanofluidics, 2020, 24(6): 41. |
| [9] | Nakaye S, Sugimoto H, Gupta N K, et al. Thermally enhanced membrane gas separation[J]. European Journal of Mechanics-B/Fluids, 2015, 49: 36-49. |
| [10] | Nakaye S, Sugimoto H. Demonstration of a gas separator composed of Knudsen pumps[J]. Vacuum, 2016, 125: 154-164. |
| [11] | Sugimoto H, Hibino M. Numerical analysis on gas separator with thermal transpiration in micro channels[C]// AIP Conference Proceedings. New York: American Institute of Physics, 2012, 1501(1): 794-801. |
| [12] | Klein T A. Energy conversion using thermal transpiration: optimization of a Knudsen compressor[D]. Cambridge: Massachusetts Institute of Technology, 2012. |
| [13] | 王博韬. 热流逸效应的抽真空特性及其在真空制冷中的应用[D]. 南宁: 广西大学, 2018. |
| Wang B T. Vacuum pumping characteristics and vacuum cooling application of thermal transpiration effect[D]. Nanning: Guangxi University, 2018. | |
| [14] | 柯杰坤. 热流逸效应下混氢天然气的传输特性及其分离研究[D]. 南宁: 广西大学, 2024. |
| Ke J K. Study of transport characteristics and separation based on thermal transpiration effect in hydrogen blending natural gas[D]. Nanning: Guangxi University, 2018. | |
| [15] | Zou Q S, He X Y. On pressure and velocity boundary conditions for the lattice Boltzmann BGK model[J]. Physics of Fluids, 1997, 9(6): 1591-1598. |
| [16] | D'Orazio A, Succi S. Boundary conditions for thermal lattice Boltzmann simulations[C]// Computational Science-ICCS 2003. Berlin, Heidelberg: Springer, 2003: 977-986. |
| [17] | Tian Z W, Zou C, Liu H J, et al. Lattice Boltzmann scheme for simulating thermal micro-flow[J]. Physica A: Statistical Mechanics and its Applications, 2007, 385(1): 59-68. |
| [18] | Tang G H, Zhang Y H, Gu X J, et al. Lattice Boltzmann model for thermal transpiration[J]. Physical Review E, 2009, 79(2): 027701. |
| [19] | Sheng Q, Tang G H, Gu X J, et al. Simulation of thermal transpiration flow using a high-order moment method[J]. International Journal of Modern Physics C, 2014, 25(11): 1450061. |
| [20] | Zhang Y H, Gu X J, Barber R W, et al. Modelling thermal flow in the transition regime using a lattice Boltzmann approach[J]. Europhysics Letters (EPL), 2007, 77(3): 30003. |
| [21] | Li L K, Mei R W, Klausner J F. Boundary conditions for thermal lattice Boltzmann equation method[J]. Journal of Computational Physics, 2013, 237: 366-395. |
| [22] | Sharipov F. Data on the velocity slip and temperature jump on a gas-solid interface[J]. Journal of Physical and Chemical Reference Data, 2011, 40(2): 023101. |
| [23] | Isfahani A H M, Soleimani A, Homayoon A. Simulation of high Knudsen number gas flows in nanochannels via the lattice Boltzmann method[J]. Advanced Materials Research, 2011, 403/404/405/406/407/408: 5318-5323. |
| [24] | Karimipour A. Provide a suitable range to include the thermal creeping effect on slip velocity and temperature jump of an air flow in a nanochannel by lattice Boltzmann method[J]. Physica E: Low-dimensional Systems and Nanostructures, 2017, 85: 143-151. |
| [25] | Shokouhmand H, Isfahani A H M. An improved thermal lattice Boltzmann model for rarefied gas flows in wide range of Knudsen number[J]. International Communications in Heat and Mass Transfer, 2011, 38(10): 1463-1469. |
| [26] | Karniadakis G, Beskok A, Aluru N. Microflows and Nanoflows Fundamentals and Simulation[M]. Berlin: Springer, 2005. |
| [27] | Beskok A, Karniadakis G E, Trimmer W. Rarefaction and compressibility effects in gas microflows[J]. Journal of Fluids Engineering, 1996, 118(3): 448-456. |
| [28] | 陈浮, 宋彦萍, 陈焕龙, 等. 气体动力学基础[M]. 哈尔滨: 哈尔滨工业大学出版社, 2013. |
| Chen F, Song Y P, Chen H L, et al. Fundamentals of Gas Dynamics[M]. Harbin: Harbin Institute of Technology Press, 2013. | |
| [29] | Rahouadja Z, Madjid H. Microchannel fluid flow and heat transfer by lattice Boltzmann method[C]// 4th Micro and Nano Flows Conference. London: UCL Engineering, 2014: 1-8. |
| [30] | 林建忠, 包福兵, 张凯, 等. 微纳流动理论及应用[M]. 北京: 科学出版社, 2010. |
| Lin J Z, Bao F B, Zhang K, et al. Theory and Applications of Micro- and Nano-Scale Flow[M]. Beijing: China Science Publishing & Media Ltd, 2010. | |
| [31] | 胡立冰. 微尺度气体流动的格子Boltzmann模拟[D]. 沈阳: 东北大学, 2012. |
| Hu L B. Lattice boltzmann simulation to micro-scale gas flows[D]. Shenyang: Northeastern University, 2012. | |
| [32] | Cercignani C. Higher order slip according to the linearized Boltzmann equation: Institute of Engineering Research Report AS-64-19[R]. Berkeley: University of California, 1964. |
| [33] | Maxwell J C. On the dynamical theory of gases[J]. Philosophical Transactions of the Royal Society of London, 1867, 157: 49-88. |
| [34] | Toschi F, Succi S. Lattice Boltzmann method at finite Knudsen numbers[J]. Europhysics Letters (EPL), 2005, 69(4): 549-555. |
| [1] | Zixiang ZHAO, Zhongdi DUAN, Haoran SUN, Hongxiang XUE. Numerical modelling of water hammer induced by two phase flow with large temperature difference [J]. CIESC Journal, 2025, 76(S1): 170-180. |
| [2] | Hao HUANG, Wen WANG, Longkun HE. Simulation and analysis on precooling process of membrane LNG carriers [J]. CIESC Journal, 2025, 76(S1): 187-194. |
| [3] | Siyuan WANG, Guoqiang LIU, Tong XIONG, Gang YAN. Characteristics of non-uniform wind velocity distribution in window air conditioner axial fans and their impact on optimizing condenser circuit optimization [J]. CIESC Journal, 2025, 76(S1): 205-216. |
| [4] | Qingtai CAO, Songyuan GUO, Jianqiang LI, Zan JIANG, Bin WANG, Rui ZHUAN, Jingyi WU, Guang YANG. Numerical study on influence of perforated plate on retention performance of liquid oxygen tank under negative gravity [J]. CIESC Journal, 2025, 76(S1): 217-229. |
| [5] | Jiuchun SUN, Yunlong SANG, Haitao WANG, Hao JIA, Yan ZHU. Study on influence of jet flow on slurry transport characteristics in slurry chamber of shield tunneling machines [J]. CIESC Journal, 2025, 76(S1): 246-257. |
| [6] | Ting HE, Shuyang HUANG, Kun HUANG, Liqiong CHEN. Research on the coupled process of natural gas chemical absorption decarbonization and high temperature heat pump based on waste heat utilization [J]. CIESC Journal, 2025, 76(S1): 297-308. |
| [7] | Haolei DUAN, Haoyuan CHEN, Kunfeng LIANG, Lin WANG, Bin CHEN, Yong CAO, Chenguang ZHANG, Shuopeng LI, Dengyu ZHU, Yaru HE, Dapeng YANG. Performance analysis and comprehensive evaluation of thermal management system schemes with low GWP refrigerants [J]. CIESC Journal, 2025, 76(S1): 54-61. |
| [8] | Junpeng WANG, Jiaqi FENG, Enbo ZHANG, Bofeng BAI. Study on flow and cavitation characteristic in zigzag and array labyrinth valve core structures [J]. CIESC Journal, 2025, 76(S1): 93-105. |
| [9] | Kaiyuan YANG, Xizhong CHEN. Comparison of discrete element method and finite-discrete element method for simulation of agglomerate breakage [J]. CIESC Journal, 2025, 76(9): 4398-4411. |
| [10] | Sheng CHEN, Zizheng LI, Chao MIAO, Xuegang BAI, Fei LI, Jiaxuan LIU, Tiantian LI, Shuang YANG, Rongrong LYU, Jiangyun WANG. Three-dimensional CFD simulation of non-uniform diffusion characteristic of high-risk chlorine gas in large-scale dense scene [J]. CIESC Journal, 2025, 76(9): 4630-4643. |
| [11] | Yifei WANG, Yuxing LI, Xin OUYANG, Xuefeng ZHAO, Lan MENG, Qihui HU, Buze YIN, Yaqi GUO. Numerical calculation of CO2 pipeline fracture propagation based on crack tip decompression characteristics [J]. CIESC Journal, 2025, 76(9): 4683-4693. |
| [12] | Lian DUAN, Xingrui ZHOU, Wenjun YUAN, Fei CHEN. Effects of continuous phase velocity pulsations on the formation and morphology of polymer droplets in microchannels [J]. CIESC Journal, 2025, 76(9): 4578-4585. |
| [13] | Yiyang LIU, Zhixiang XING, Yecheng LIU, Ming PENG, Yuyang LI, Yunhao LI, Ningzhou SHEN. Numerical simulation study on the leakage diffusion characteristics and safety monitoring of liquid hydrogen in hydrogen refueling stations [J]. CIESC Journal, 2025, 76(9): 4694-4708. |
| [14] | Zhengzong HUANG, Kecheng LIU, Zefang LI, Pingsheng ZENG, YongFu LIU, Hongjie YAN, Liu LIU. Numerical simulation and field synergy optimization of brick-built heat exchange chamber in zinc refining furnace [J]. CIESC Journal, 2025, 76(9): 4425-4439. |
| [15] | Zhiyong JIA, Xiankun SHEN, Xiaocheng LAN, Tiefeng WANG. CFD-DEM simulation of effects of gas density on pressurized fluidization [J]. CIESC Journal, 2025, 76(9): 4383-4397. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||