CIESC Journal ›› 2018, Vol. 69 ›› Issue (S1): 176-181.doi: 10.11949/j.issn.0438-1157.20180872

Previous Articles    

Experimental exploration of passive energy storage device with phase change materials for vehicle

ZHANG Liang, SHI Zhongke   

  1. School of Automation, Northwestern Polytechnical University, Xi'an 710129, Shaanxi, China
  • Received:2018-07-25 Revised:2018-08-01 Online:2018-09-30 Published:2018-09-30


Phase change materials absorb or release heat during phase changing, but its own temperature keep constant. Thus, a box-type energy storage device was developed to regulate the internal temperature of the vehicle and saving energy. Since the suitable environment temperature of human body is 22-26℃ and the phase change temperature of paraffin is 25℃, paraffin is chosen as phase change energy storage material. In this experiment, the melting process and solidification process of paraffin packed in aluminum bottles had been explored. The air velocity of outlet was set at 2.5 m/s. When the air temperature of inlet was 35℃, the paraffin could absorb heat in the melting process and reduce the ambient temperature by 3℃ for 3 hours. When the air temperature of inlet was 10℃, the heat could be released in the solidification process and the ambient temperature was increased by 3℃ above for 3.5 hours. Meanwhile, the temperature change regularity of the graphite composite in the melting and solidification process is explored. Under the condition of constant air velocity, the rate of melting and solidification of graphite composite is related to the temperature difference between phase change material and ambient air. The greater the temperature difference, the faster the phase transition speed and the shorter the phase transition time.

Key words: phase change materials, vehicle energy saving, environment, heat transfer, composites

CLC Number: 

  • TQ021.3
[1] HUSSEIN A, PAYAM N, MUHD Z A, et al. A review on phase change material (PCM) for sustainable passive cooling in building envelopes[J]. Renewable and Sustainable Energy Reviews, 2016, 60:1470-1497.
[2] WANG T, FOLIENTE G, SONG X Y, et al. Implications and future direction of greenhouse gas emission mitigation policies in the building sector of China[J]. Renewable and Sustainable Energy Reviews, 2014, 31:520-530.
[3] MOHAMMAD S, ALVARO D G, SVETLANA U, et al. Passive cooling of buildings with phase change materials using whole-building energy simulation tools:a review[J]. Renewable and Sustainable Energy Reviews, 2017, 80:1239-1255.
[4] Nikkei Inc. China to pass US in carbon emissions[EB/OL].[2015-05-18].
[5] 国网能源研究院. 2010中国节能节电分析报告[R]. 北京:中国电力出版社,2010. State Grid Energy Research Institute. 2010 China Energy Saving Analysis report[R]. Beijing:China Electric Power Press,2010.
[6] LIN W Y, MA Z J, SOHEL M I, et al. Development and evaluation of a ceiling ventilation system enhanced by solar photovoltaic thermal collectors and phase change materials[J]. Energy Conversion and Management, 2014, 88:218-230.
[7] 王秀兰. 美国要求电厂碳排放减三成[J]. 中国石油和化工, 2014, 7:40-41. WANG X L. US calls for 30% reduction in power plant carbon emissions[J]. China Petroleum and Chemical Industry, 2014, 7:40-41.
[8] 李诚. 零碳建筑的发展现状[J]. 绿色建筑, 2015, 7(3):19-23. LI C. Development of zero carbon building[J]. Green Building, 2015, 7(3):19-23.
[9] 毕超. 中国能源CO2排放峰值方案及政策建议[J].中国人口·资源与环境, 2015, 25(5):20-27. BI C. Scheme and policies for peaking energy carbon emissions in China[J]. China Population, Resources and Environment, 2015, 25(5):20-27.
[10] 张睿航, 牛润萍. 相变蓄能材料在建筑节能方面的应用研究进展[J]. 材料导报, 2016, 30(S1):383-386. ZHANG R H, NIU R P. Application research progress of phase change storage materials in building energy conservation[J]. Materials Review, 2016, 30(S1):383-386.
[11] ORÓ E, GRACIA A D, CASTELL A, et al. Review on phase change materials (PCMs) for cold thermal energy storage applications[J]. Applied Energy, 2012, 99:513-533.
[12] BELMONTE J F, EGUÍA P, MOLINA A E, et al. Thermal simulation and system optimization of a chilled ceiling coupled with a floor containing a phase change material (PCM)[J]. Sustainable Cities and Society, 2015, 14:154-170.
[13] ZALBA B, MARÍN J M, CABEZA L F, et al. Review on thermal energy storage with phase change:materials, heat transfer analysis and applications[J]. Applied Thermal Engineering, 2003, 23(3):251-283.
[14] ZHANG M, MEDINA M A, KING J B. Development of a thermally enhanced frame wall with phase-change materials for on-peak air conditioning demand reduction and energy savings in residential buildings[J]. International Journal of Energy Research, 2005, 29(9):795-809.
[15] RUBEN B, BJØRN P J, ARILD G. Phase change materials for building applications:a state-of-the-art review[J]. Energy and Buildings, 2010, 42(9):1361-1368.
[16] LI X L, ZHANG L, WANG S Q, et al. Inorganic phase change materials in building energy saving[J]. Applied Mechanics and Materials, 2011, 71-78:2606-2609.
[17] SAFFARI M, PISELLI C, GRACIA A D, et al. Thermal stress reduction in cool roof membranes using phase change materials(PCM)[J]. Energy and Buildings, 2018, 158:1097-1105.
[18] ELARGA H, FANTUCCI S, SERRA V, et al. Experimental and numerical analyses on thermal performance of different typologies of PCMs integrated in the roof space[J]. Energy and buildings, 2017, 150:546-557.
[19] STRITIH U, BUTALA V. Energy savings in building with a PCM free cooling system[J]. Journal of Mechanical Engineering, 2011, 57(2):125-134.
[20] 黄婷婷, 郭燕雯, 张志伟, 等.一种汽车余热驱动的固体吸附空调系统:103940143A[P]. 2014-07-23. HUANG T T, GUO Y W, ZHANG Z W, et al. A solid adsorption air conditioner driven by waste heat of automobile:103940143A[P]. 2014-07-23.
[21] 杨肖虎, 李杨, 张联英, 等. 一种相变储能的电动公交车辐射空调系统:106143048A[P].2016-11-23. YANG X H, LI Y, ZHANG L Y, et al. A radiant air conditioner with phase change energy storage for an electric bus:106143048A[P]. 2016-11-23.
[22] SCHATZ O. Cold start improvements with a heat store[C]//SAE Technical Paper 910305.1991.
[23] KORIN E, RESHEF R, TSHERNICHOVESKY D, et al. Improving cold-start functioning of catalytic converters by using phase-change materials[C]//SAE Technical Paper 980671.1998.
[24] 杨启容, 杨娟, 刘大维. 回收发动机余热的球内对称凝固过程参数分析[J]. 农业机械学报,2006, 37(3):27-30. YANG Q R, YANG J, LIU D W. Parameter analysis of freezing in spheres for the recovering of waste heat of engine[J]. Transactions of the Chinese Society for Agricultural Machinery, 2006, 37(3):27-30.
[25] 高青, 王永珍, 王国华, 等. 基于车辆余热蓄能利用的作用特性分析[J]. 热科学与技术, 2008, 7(4):314-319. GAO Q, WANG Y Z, WANG G H, et al. Characteristics of thermal energy storage on automobile waste heat for vehicle heating[J]. Journal of Thermal Science and Technology, 2008,7(4):314-319.
[26] STRITIH U, BUTALA V. Energy saving in building with PCM cold storage[J]. International Journal of Energy Research, 2007, 31:1532-1544.
[27] 李得伦. 石蜡相变材料的传热与控温性能研究[D]. 广州:华南理工大学, 2012. LI D L. Research on the heat transfer and thermal control performance of paraffin phase change material[D]. Guangzhou:South China University of Technology,2012.
[28] 胡小冬, 高学农, 李得伦, 等. 石蜡/膨胀石墨定形相变材料的性能[J].化工学报, 2013, 64(10):3831-3837. HU X D, GAO X N, LI D L, et al. Performance of paraffin/expanded graphite composite phase change materials[J]. CIESC Journal,2013, 64(10):3831-3837.
[29] WANG Z C, ZHANG Z Q, JIA L, et al. Paraffin and paraffin/aluminum foam composite phase change material heat storage experimental study based on thermal management of Li-ion battery[J]. Applied Thermal Engineering, 2015, 78:428-436.
[30] LIN C J, XU S C, CHANG G F, et al. Experiment and simulation of a LiFePO4 battery pack with a passive thermal management system using composite phase change material and graphite sheets[J], Journal of Power Sources, 2015, 275:742-749.
[31] 史巍, 程素香. 石蜡石墨粉复合相变材料在温室大棚中的控温效果研究[J]. 硅酸盐通报, 2017, 36(12):4112-4116. SHI W, CHENG S X. Temperature control effect of paraffin graphite composite phase change materials in greenhouse[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(12):4112-4116.
[32] 崔艳琦.相变材料热性能及其在室内被动式储能系统的简易计算[J].储能科学与技术, 2017, 6(2):302-306. CUI Y Q. Thermal properties of phase change materials (PCM) and their concise calculations for passive storage applications in buildings[J]. Energy Storage Science and Technology, 2017, 6(2):302-306.
[1] LI Fan, LU Gaofeng, MA Guangbai, ZHAI Xiaoqiang, YANG Shunfa. Numerical simulation and performance analysis of heat transfer enhancement in tube by longitudinal vortex [J]. CIESC Journal, 2021, 72(S1): 120-126.
[2] MA Qiuming, NIE Lei, PAN Quanwen, SHAN He, CAO Weiliang, WANG Qiang, WANG Ruzhu. Heat exchange performance of a battery chiller for electric vehicles [J]. CIESC Journal, 2021, 72(S1): 170-177.
[3] KUANG Yiwu, SUN Lijie, WANG Wen, ZHUAN Rui, ZHANG Liang. Numerical investigation of hydrogen flow boiling based on two-fluid model [J]. CIESC Journal, 2021, 72(S1): 184-193.
[4] SHAN He, MA Qiuming, PAN Quanwen, CAO Weiliang, WANG Qiang, WANG Ruzhu. Simulation of heat transfer performance in the coolant side of a novel chiller for electric vehicles thermal management system [J]. CIESC Journal, 2021, 72(S1): 194-202.
[5] XIE Yao, LI Jianrui, HU Haitao. Simulation of supercritical methane flow and heat transfer characteristics in printed circuit heat exchanger [J]. CIESC Journal, 2021, 72(S1): 203-209.
[6] ZHAO Haifeng, LI Hong, LI Xingang, GAO Xin. Numerical simulation of microwave distillation reactor with multi-physical field coupling: heating and boiling processes [J]. CIESC Journal, 2021, 72(S1): 266-277.
[7] LIN Shiquan, ZHAO Yaxin, LYU Zhongyuan, LAI Zhancheng, HU Haitao. Effect of hydrophilicity and hydrophobicity on pool boiling heat transfer characteristics on metal foam [J]. CIESC Journal, 2021, 72(S1): 295-301.
[8] WANG Lingyue, ZHU Jinrong, WANG Congle, LYU Hui, CHENG Chunfu, ZHANG Jinye. Influence of diverter in cylinder array on its natural convection heat transfer [J]. CIESC Journal, 2021, 72(S1): 310-317.
[9] GU Xiao, ZOU Huiming, HAN Xinxin, TANG Mingsheng, TIAN Changqing. Heating performance of vapor injection heat pump based on waste heat recovery [J]. CIESC Journal, 2021, 72(S1): 326-335.
[10] WANG Fei, WANG Jianmin, SHAO Shuangquan. Analysis multi-stage heat transfer process of data center cooling system from the temperature difference [J]. CIESC Journal, 2021, 72(S1): 348-355.
[11] ZHAO Junzhe, LIU Fangchen, LI Yuanlu, DU Wenjing. Flow and heat transfer characteristics of triangular cylinder in a channel with low Reynolds number [J]. CIESC Journal, 2021, 72(S1): 382-389.
[12] ZHOU Dongyi, XIAO Xianghua, XIAO Biao, LIU Yicai. Method of determining optimum mass ratio of fatty acids in composite phase change materials for thermal energy storage [J]. CIESC Journal, 2021, 72(S1): 560-566.
[13] JIANG Jiatong, HU Bin, WANG Ruzhu, LIU Hua, ZHANG Zhiping, LI Hongbo. Dynamic simulation of horizontal condenser of R1233zd(E) high temperature heat pump [J]. CIESC Journal, 2021, 72(S1): 98-105.
[14] Yanhong WANG, Yingnan LU, Sufen LI, Ming DONG. Numerical study on heat transfer of supercritical-pressure RP-3 aviation kerosene in U-turn circular tubes [J]. CIESC Journal, 2021, 72(9): 4639-4648.
[15] Chenyue LIU, Tong ZHENG, Yuanbo LIU, Rongfu WEN, Kai CHEN, Xuehu MA. Shell side high efficiency and low resistance performance of heat exchanger with bionic structures [J]. CIESC Journal, 2021, 72(9): 4511-4522.
Full text



[1] CHEN Jingyu, ZHANG Lei, CHEN Jinchun, CHEN Guoqiang. Biosynthesis and characterization of polyhydroxyalkanoate copolyesters in Ralstonia
PHB4 harboring a low-substrate-specificity PHA synthase PhaC2Ps from Pseudomonas
[J]. , 2007, 15(3): 391 -396 .
[2] LI Yongfei, YAN Xuhui, JIANG Guofang, LIU Qiang, SONG Jianxin, GUO Cancheng. Toluene oxyfunctionalization with air over metalloporphyrins and reaction condition
[J]. , 2007, 15(3): 453 -457 .
[3] XIA Bingle, LIU Qingliang, LI Minli, XU Xiaolong, SHI Chunhua, XIE Yongshu. Separation and Purification of Tobacco Peroxidase I from Nicotiana Tobaccum[J]. , 2003, 11(3): 341 -343 .
[4] KE Ming, WANG Xieqing, ZHANG Fengmei. Physicochemical Features of Phosphorus-Modified ZSM-5 Zeolite and Its Performance on
Catalytic Pyrolysis to Produce Ethylene
[J]. , 2003, 11(6): 671 -676 .
[5] YOU Xueyi, H.J.Bart. Comparison of the Reynolds-averaged Turbulence Models on Single Phase Flow Simulation in
Agitated Extraction Columns
[J]. , 2003, 11(3): 362 -366 .
[6] HunYong SHIN, Hwayong KIM, Ki-Pung YOO, ChulSoo LEE, Yoshio IWAI, Yasuhiko ARAI. Correlation of Critical Loci for Water-Hydrocarbon Binary Systems by EOS Based on the
Multi-Fluid Nonrandom Lattice Theory
[J]. , 2002, 10(6): 661 -665 .
[7] K.Smolders, D.Geldart, J.Baeyensc. The Physical Models of Cyclone Diplegs in Fluidized Beds[J]. , 2001, 9(4): 337 -347 .
[8] ZHOU Lifang, QIAN Jixin. The IMC Structure of Multi-rate Multivariable Predictive Control Systems and An Improved
[J]. , 2001, 9(3): 273 -279 .
[9] CHEN Fengqiu, WU Sufang, CHEN Jizhong, RONG Shunxi. COD Removal Efficiencies of Some Aromatic Compounds in Supercritical Water Oxidation [J]. , 2001, 9(2): 137 -140 .
[10] XU Songlin, Jose Espinosa, Hector E. Salomone, Oscar A. Iribarren. Operation of a Batch Stripping Distillation Column[J]. , 2001, 9(2): 141 -144 .