化工学报 ›› 2020, Vol. 71 ›› Issue (11): 5178-5187.DOI: 10.11949/0438-1157.20200186
收稿日期:
2020-02-25
修回日期:
2020-05-24
出版日期:
2020-11-05
发布日期:
2020-11-05
通讯作者:
童张法
作者简介:
徐浩(1993—),男,硕士研究生,基金资助:
Hao XU(),Yang LI,Chengkang XIA,Ruining HE,Yun ZOU,Zhangfa TONG()
Received:
2020-02-25
Revised:
2020-05-24
Online:
2020-11-05
Published:
2020-11-05
Contact:
Zhangfa TONG
摘要:
以吡啶硫酸氢盐离子液体为催化剂,系统研究其催化甘油和乙酸酯化反应生成三乙酸甘油酯的动力学行为。采用单因素实验考察反应温度、酸醇摩尔比、催化剂用量等因素对甘油转化率及产物三乙酸甘油酯收率的影响。根据拟均相一级反应机理建立微分方程组模型,通过动力学数据拟合获得指前因子和反应活化能。结果表明:甘油转化率随反应温度、酸醇摩尔比升高而增加;随着催化剂用量的增加,甘油的反应速率逐渐增大,但平衡转化率基本不变。当反应温度为110℃,乙酸/甘油摩尔比为6∶1,催化剂用量为甘油的3%(质量分数)时,甘油转化率最高为98.5%,三乙酸甘油酯收率最高为40.4%。甘油与乙酸反应逐步生成单乙酸甘油酯、二乙酸甘油酯、三乙酸甘油酯的指前因子k10、k20、k30分别为7.17、14.19、13.78 min-1,其相应的反应活化能E1、E2、E3分别为19.10、21.58、23.25 kJ·mol-1,该动力学模型计算值与实验值吻合较好。该催化剂相较于已报道的Amberlyst-15、杂多酸催化剂反应条件更温和、选择性更高、反应活化能更小,具有更好的催化效果。
中图分类号:
徐浩,李洋,夏成康,何瑞宁,邹昀,童张法. 吡啶硫酸氢盐离子液体催化甘油与乙酸酯化反应动力学[J]. 化工学报, 2020, 71(11): 5178-5187.
Hao XU,Yang LI,Chengkang XIA,Ruining HE,Yun ZOU,Zhangfa TONG. Kinetics of esterification of glycerol with acetic acid catalyzed by pyridine bisulfate ionic liquid[J]. CIESC Journal, 2020, 71(11): 5178-5187.
温度/℃ | k1 | k2 | k3 |
---|---|---|---|
65 | 7.9×10-3 | 6.7×10-3 | 3.5×10-3 |
80 | 11.1×10-3 | 8.9×10-3 | 5.1×10-3 |
95 | 13.8×10-3 | 12.1×10-3 | 6.9×10-3 |
110 | 17.8×10-3 | 16.5×10-3 | 9.3×10-3 |
表1 不同反应温度下的反应速率常数
Table 1 Reaction rate constants at different temperatures
温度/℃ | k1 | k2 | k3 |
---|---|---|---|
65 | 7.9×10-3 | 6.7×10-3 | 3.5×10-3 |
80 | 11.1×10-3 | 8.9×10-3 | 5.1×10-3 |
95 | 13.8×10-3 | 12.1×10-3 | 6.9×10-3 |
110 | 17.8×10-3 | 16.5×10-3 | 9.3×10-3 |
ki | ki0/min-1 | Ea,i/(kJ·mol-1) |
---|---|---|
k1 | 7.17 | 19.10 |
k2 | 14.19 | 21.58 |
k3 | 13.78 | 23.25 |
表2 甘油与乙酸酯化反应的指前因子和活化能
Table 2 Pre-exponential factor and activation energy of G-AA esterification
ki | ki0/min-1 | Ea,i/(kJ·mol-1) |
---|---|---|
k1 | 7.17 | 19.10 |
k2 | 14.19 | 21.58 |
k3 | 13.78 | 23.25 |
图7 不同反应温度下各组分变化的实验点与计算曲线的比较
Fig.7 Comparison between experimental points and calculated curves of changes in components at different reaction temperatures
催化剂种类 | 最佳反应条件 | 甘油转化率 | 产物收率 | 反应活化能 |
---|---|---|---|---|
Amberlyst-15[ | t=110℃, MR=9∶1, ccat=82.86 mmol H+/L | αG=97.1% | YMAG=7.6% | E1=57.26 kJ·mol-1 |
YDAG=46.3% | E2=31.87 kJ·mol-1 | |||
YTAG=43.2% | E3=13.90 kJ·mol-1 | |||
hetropoly acid[ | t=110℃, MR=9∶1, ccat=8.51 mmol H+/L | αG=98.2% | YMAG=23.4% | E1=24.99 kJ·mol-1 |
YDAG=59.6% | E2=28.10 kJ·mol-1 | |||
YTAG=15.2% | E3=51.73 kJ·mol-1 | |||
pyridine bisulfate ionic liquid (本文) | t=110℃, MR=6∶1, ccat=129.04 mmol H+/L | αG=98.5% | YMAG=11.5% | E1=19.10 kJ·mol-1 |
YDAG=46.6% | E2=21.58 kJ·mol-1 | |||
YTAG=40.4% | E3=23.25 kJ·mol-1 |
表3 不同催化剂性能的比较
Table 3 Performances comparison of different catalysts for G-AA esterification
催化剂种类 | 最佳反应条件 | 甘油转化率 | 产物收率 | 反应活化能 |
---|---|---|---|---|
Amberlyst-15[ | t=110℃, MR=9∶1, ccat=82.86 mmol H+/L | αG=97.1% | YMAG=7.6% | E1=57.26 kJ·mol-1 |
YDAG=46.3% | E2=31.87 kJ·mol-1 | |||
YTAG=43.2% | E3=13.90 kJ·mol-1 | |||
hetropoly acid[ | t=110℃, MR=9∶1, ccat=8.51 mmol H+/L | αG=98.2% | YMAG=23.4% | E1=24.99 kJ·mol-1 |
YDAG=59.6% | E2=28.10 kJ·mol-1 | |||
YTAG=15.2% | E3=51.73 kJ·mol-1 | |||
pyridine bisulfate ionic liquid (本文) | t=110℃, MR=6∶1, ccat=129.04 mmol H+/L | αG=98.5% | YMAG=11.5% | E1=19.10 kJ·mol-1 |
YDAG=46.6% | E2=21.58 kJ·mol-1 | |||
YTAG=40.4% | E3=23.25 kJ·mol-1 |
1 | Johnson D T, Taconi K A. The glycerin glut: options for the value-added conversion of crude glycerol resulting from biodiesel production[J]. Environmental Progress, 2007, 26(4): 338-348. |
2 | 金浩, 陆佳伟, 汤吉海, 等. 带侧线反应精馏-渗透汽化生产乙酸乙酯集成过程模拟与分析[J]. 化工学报, 2018, 69(8): 3469-3478. |
Jin H, Lu J W, Tang J H, et al. Simulation and analysis of a side stream reactive distillation-pervaporation integrated process for ethyl acetate production[J]. CIESC Journal, 2018, 69(8): 3469-3478. | |
3 | 张时雨, 邹昀, 韦藤幼, 等. β-环糊精/聚醚共聚乙酰胺填充膜的制备及渗透汽化分离水中微量苯酚[J]. 化工学报, 2016, 67(11): 4662-4670. |
Zhang S Y, Zou Y, Wei T Y, et al. Preparation of β-cyclodextrin filled PEBA membranes and pervaporation separation of phenol from dilute solution[J]. CIESC Journal, 2016, 67(11): 4662-4670. | |
4 | 牟春霞, 张时雨, 邹昀, 等. 疏水SiO2填充PDMS膜分离水中乙酸正丁酯的性能[J]. 化工学报, 2017, 68(6): 2407-2414. |
Mu C X, Zhang S Y, Zou Y, et al. Separation of n-butyl acetate from aqueous solution using PDMS membrane filled with hydrophobic SiO2[J]. CIESC Journal, 2017, 68(6): 2407-2414. | |
5 | 刘燕青, 胡听听, 鲁落义, 等. PDMS/ZSM-5膜的制备及渗透汽化分离水中的乙酸正丁酯和乙酸乙酯[J]. 化工学报, 2020, 71(2): 843-853. |
Liu Y Q, Hu T T, Lu L Y, et al. Preparation of PDMS/ZSM-5 membranes and pervaporation separation of n-butyl acetate and ethyl acetate from aqueous media[J]. CIESC Journal, 2020, 71(2): 843-853. | |
6 | Ratsegari H, Ghaziaskar H S, Yalpani M, et al. Development of a continuous system based on azeotropic reactive distillation to enhance triacetin selectivity in glycerol esterification with acetic acid[J]. Energy & Fuels, 2017, 31(8): 8256-8262. |
7 | 马慧媛, 武跃, 刘秀梅, 等. 无溶剂条件下Brønsted酸离子液体催化丙三醇与醋酸的酯化反应[J]. 石油学报, 2012, 28(3): 399-406. |
Ma H Y, Wu Y, Liu X M, et al. Esterification of glycerol with acetic acid catalyzed by brønsted acid ionic liquids under solvent-free conditions[J]. Acta Petrolel Sinica, 2012, 28(3): 399-406. | |
8 | 李洪, 肖财春, 吴艳, 等. 乙酸正戊酯酯化反应动力学探讨与催化精馏模拟[J]. 化工进展, 2018, 37(11): 4143-4149. |
Li H, Xiao C C, Wu Y, et al. Kinetics of esterification of n-amyl acetate and simulation of catalytic distillation[J]. Chemical Industry and Engineering Progress, 2018, 37(11): 4143-4149. | |
9 | Liu J Y, Wang Z H, Sun Y L, et al. Selective synthesis of triacetin from glycerol catalyzed by HZSM-5/MCM-41 micro/mesoporous molecular sieve[J]. Chinese Journal of Chemical Engineering, 2019, 27(5): 1073-1078. |
10 | 王德胜, 闫亮, 王晓来. 杂多酸催化剂研究进展[J]. 分子催化, 2012, 26(4): 366-375. |
Wang D S, Yan L, Wang X L. Research progress of heteropoly acid catalysts[J]. Journal of Molecular Catalysis, 2012, 26(4): 366-375. | |
11 | 冷炎, 仇学谦, 蒋平平, 等. 酸性聚乙烯基吡咯烷酮-杂多酸杂化催化剂的合成及其催化酯化反应性能[J]. 催化学报, 2012, 33(7): 1224-1228. |
Leng Y, Qiu X Q, Jiang P P, et al. Synthesis of polyvinyl pyrrolidone-heteropolyacid acidic hybrid catalyst and its catalytic activity for esterification reactions[J]. Chinese Journal of Catalysis, 2012, 33(7): 1224-1228. | |
12 | 陈焕章, 张悦, 冯雪, 等. SO42-/MxOy型固体超强酸催化剂的研究进展[J]. 化工进展, 2018, 37(5): 1795-1803. |
Chen H Z, Zang Y, Feng X, et al. Research progress of SO42-/MxOy solid superacid catalysts[J]. Chemical Industry and Engineering Progress, 2018, 37(5): 1795-1803. | |
13 | 付尧. 复合固体超强酸催化剂MoO3/TiO2-ZrO2-SiO2的制备及其在酯化反应中的应用[J]. 化学反应工程与工艺, 2018, 34(3): 261-267. |
Fu Y. Preparation of solid superacid catalyst MoO3/TiO2-ZrO2-SiO2 and its application in esterification reaction[J]. Chemical Reaction Engineering and Technology, 2018, 34(3): 261-267. | |
14 | Reinoso D M, Tonetto G M. Bioadditives synthesis from selective glycerol esterification over acidic ion exchange resin as catalyst[J]. Journal of Environmental Chemical Engineering, 2018, 6(2): 3399-3407. |
15 | 廖安平, 左卫元, 篮平, 等. 强酸性离子交换树脂催化合成乙酸正丁酯动力学[J]. 高校化学工程学报, 2012, 26(2): 254-258. |
Liao A P, Zuo W Y, Lan P, et al. Kinetics of catalytic synthesis of n-butyl acetate using strong acid ion exchange resin as catalyst[J]. Journal of Chemical Engineering of Chinese Universities, 2012, 26(2): 254-258. | |
16 | Dosuna R I, Gaigneaux E M. Glycerol acetylation catalysed by ion exchange resins[J]. Catalysis Today, 2012, 195(1): 14-21. |
17 | Gonçalwes C E, Laier L O, Cardoso A L, et al. Bioadditive synthesis from H3PW12O40-catalyzed glycerol esterification with HOAc under mild reaction conditions[J]. Fuel Processing Technology, 2012, 102: 46-52. |
18 | 章爱华, 邓斌, 刘文萍, 等. 硫酸氢钾催化合成草酸二丁酯[J]. 应用化工, 2011, 40(3): 435-437. |
Zhang A H, Deng B, Liu W P, et al. Synthesis of dibutyl oxalate catalyzed by potassium bisulfate[J]. Applied Chemical Industry, 2011, 40(3): 435-437. | |
19 | Keogh J, Tiwari M S, Manyar H. Esterification of glycerol with acetic acid using nitrogen-based brønsted-acidic ionic liquids[J]. Industrial & Engineering Chemistry Research, 2019, 58(37): 17235-17243. |
20 | 袁冰, 刘天, 于世涛. 强酸性杂多类离子液体及其催化甘油酯化反应性能[J]. 高校化学工程学报, 2014, 28(6): 1263-1268. |
Yuan B, Liu T, Yu S T. Strong acidic heteropoly ionic liquids and their catalytic properties for esterification of glycerol[J]. Journal of Chemical Engineering of Chinese Universities, 2014, 28(6): 1263-1268. | |
21 | Parvulescu V I, Hardacre C. Catalysis in ionic liquids[J]. Chemical Reviews, 2014, 107(6): 2615-2665. |
22 | 董颜箔, 何瑞宁, 牟春霞, 等. 离子液体催化反应精馏合成乙酸乙酯工艺模拟[J]. 化工进展, 2018, 37(2): 468-474. |
Dong Y B, He R N, Mu C X, et al. Simulation of distillation process of ethyl acetate by ionic liquid catalysis[J]. Chemical Industry and Engineering Progress, 2018, 37(2): 468-474. | |
23 | 贾鹏飞, 王娟, 常永芳, 等. 酸性离子液体[N4H4(CH2)6]·4HSO4催化合成氯乙酸乙酯[J]. 精细化工, 2018, 35(4): 608-611. |
Jia P F, Wang J, Chang Y F, et al. Catalytic synthesis of ethyl chloroacetate with acidic ionic liquid [N4H4(CH2)6]·4HSO4[J]. Fine Chemicals, 2018, 35(4): 608-611. | |
24 | Sun S D, Hou X B, Hu B X. Synthesis of glyceryl monocaffeate using ionic liquids as catalysts[J]. Journal of Molecular Liquids, 2017, 248: 643-650. |
25 | 彭宝祥, 舒庆, 王光润, 等. 酸催化酯化法制备生物柴油动力学研究[J]. 化学反应工程与工艺, 2009, 25(3): 250-255. |
Peng B X, Shu Q, Wang G R, et al. Study on kinetics of biodiesel prepared by acid catalytic esterification[J]. Chemical Reaction Engineering and Technology, 2009, 25(3): 250-255. | |
26 | 贾玉岩, 周利民, 罗太安, 等. 固体酸Amberlyst-15催化甘油-乙酸酯化动力学研究[J]. 石油学报, 2015, 31(1): 160-165. |
Jia Y Y, Zhou L M, Luo T A, et al. Kinetics of esterification of glycerol-acetic acid catalyzed by Amberlyst-15 solid acid[J]. Journal of Petroleum, 2015, 31(1): 160-165. | |
27 | Li H, Li J, Li X G, et al. Esterification of glycerol and acetic acid in a pilot-scale reactive distillation column: experimental investigation, model validation, and process analysis[J]. Journal of the Taiwan Institute of Chemical Engineers, 2018, 89: 56-66. |
28 | He R N, Zou Y, Dong Y B, et al. Kinetic study and process simulation of esterification of acetic acid and ethanol catalyzed by [HSO3-bmim][HSO4][J]. Chemical Engineering Research and Design, 2018, 137: 235-245. |
29 | 任亚辉. 基于甘油乙酰化反应的高选择性催化剂研究[D]. 郑州:河南工业大学, 2015: 15-17. |
Ren Y H. Study on highly selective catalysts for acetylation of glycerol[D]. Zhengzhou: Henan University of Technology, 2015: 15-17. | |
30 | 胡雪玲, 韦藤幼, 吴炼, 等. 改性膨润土催化麻疯树油酯交换反应动力学及生物柴油纯化[J]. 化工学报, 2015, 66(8): 3113-3119. |
Hu X L, Wei T Y, Wu L, et al. Kinetics of jatropha oil transesterification catalyzed by modified bentonite and biodiesel purification[J]. CIESC Journal, 2018, 69(8): 3469-3478. | |
31 | Hasabnis A, Mahajani S. Entrainer-based reactive distillation for esterification of glycerol with acetic acid[J]. Industrial & Engineering Chemistry Research, 2010, 49(19): 9058-9067. |
32 | Akbay E O, Altiokka M R. Kinetics of esterification of acetic acid with n-amyl alcohol in the presence of amberlyst-36[J]. Applied Catalysis A, 2011, 396(1/2): 14-19. |
33 | 黄华江. 实用化工计算机模拟-MATLAB在化学工程中的应用[M]. 北京:化学工业出版社, 2004:73-76. |
Huang H J. Practical Computers Simulation of Chemical Process-MATLAB's Application in Chemical Engineering[M]. Beijing:Chemical Industrial Press, 2004: 73-76. | |
34 | Pankajakshan A, Pudi S M, Biswas P. Acetylation of glycerol over highly stable and active sulfated alumina catalyst: reaction mechanism, kinetic modeling and estimation of kinetic parameters[J]. International Journal of Chemical Kinetics, 2017, 50(2): 98-111. |
35 | 张建侯, 刘洪勤. 液体粘度与温度的新关联方程[J]. 化工学报, 1990,41(5): 644. |
Zhang J H, Liu H Q. New correlation equation of liquid viscosity and temperature[J]. Journal of Chemical Industry and Engineering(China), 1990,41(5): 644. | |
36 | 李进. 三乙酸甘油酯合成的反应精馏中试实验与过程优化[D]. 天津:天津大学, 2018: 41-44. |
Li J. Pilot-scale experiment and process optimization of triacetin systhesis via reactive distillation technology[J]. Tianjin: Tianjin University, 2018: 41-44. | |
37 | 尚岩, 关胜楠, 仲昭琪, 等. 微波辐射树脂催化合成L-氨基酸酯[J]. 精细化工, 2011, 28(5): 484-487. |
Shang Y, Guan S N, Zhong Z Q, et al. Synthesis of L-amino acid esters catalyzed by resin under microwave irradiation[J]. Fine Chemicals, 2011, 28(5): 484-487. | |
38 | Zhou L M, Nguyen T H, Adesina A A. The acetylation of glycerol over amberlyst-15: kinetic and product distribution[J]. Fuel Processing Technology, 2012, 104: 310-318. |
39 | Veluturla S, Naruia A, Rao D S, et al. Kinetic study of synthesis of bio-fuel additives from glycerol using a hetropolyacid[J]. Resource-Efficient Technologies, 2017, 3(3): 337-341. |
[1] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及分析[J]. 化工学报, 2023, 74(S1): 53-63. |
[2] | 李锦潼, 邱顺, 孙文寿. 煤浆法烟气脱硫中草酸和紫外线强化煤砷浸出过程[J]. 化工学报, 2023, 74(8): 3522-3532. |
[3] | 李艳辉, 丁邵明, 白周央, 张一楠, 于智红, 邢利梅, 高鹏飞, 王永贞. 非常规服役超临界锅炉的微纳尺度腐蚀动力学模型建立及应用[J]. 化工学报, 2023, 74(6): 2436-2446. |
[4] | 王承泽, 顾凯丽, 张晋华, 石建轩, 刘艺娓, 李锦祥. 硫化协同老化零价铁增效去除水中Cr(Ⅵ)的作用机制[J]. 化工学报, 2023, 74(5): 2197-2206. |
[5] | 郑杰元, 张先伟, 万金涛, 范宏. 丁香酚环氧有机硅树脂的制备及其固化动力学研究[J]. 化工学报, 2023, 74(2): 924-932. |
[6] | 周桓, 张梦丽, 郝晴, 吴思, 李杰, 徐存兵. 硫酸镁型光卤石转化钾盐镁矾的过程机制与动态规律[J]. 化工学报, 2022, 73(9): 3841-3850. |
[7] | 何瑞宁, 邹昀, 石萌, 李洋, 徐晶, 童张法. 固载离子液体[HSO3-BMIM][HSO4]/SiO2的制备及其催化乙酸乙醇酯化反应的研究[J]. 化工学报, 2022, 73(9): 3880-3894. |
[8] | 马语峻, 刘向军. 多孔陶瓷膜烟气水分回收理论与模型研究[J]. 化工学报, 2022, 73(9): 4103-4112. |
[9] | 宋谦石, 王潇伟, 张威, 汪小憨, 李浩文, 乔瑜. 无机元素对生物质焦炭-CO2气化反应性的催化/抑制作用研究及模型构建[J]. 化工学报, 2022, 73(11): 5240-5250. |
[10] | 张牧星, 张小松, 丁烨, 宋翼. 氧化石墨烯膜间距对电渗析空气除湿特性影响的分子动力学研究[J]. 化工学报, 2021, 72(S1): 63-69. |
[11] | 王立晖, 刘焕, 李赫宇, 郑晓冰, 姜艳军, 高静. 核壳结构磁性树枝状纤维形有机硅固定化脂肪酶制备及其应用[J]. 化工学报, 2021, 72(9): 4861-4871. |
[12] | 张梦飞, 张玲, 李晓闯, 祖韵秋, 黄明, 石宪章, 刘春太. 厚壁橡胶制品非等温硫化过程模拟与实验研究[J]. 化工学报, 2021, 72(4): 2065-2075. |
[13] | 李梦钖, 高明, 左启蓉, 章立新, 赵玉刚. 过冷壁面液滴中四丁基溴化铵水合物生成的可视化研究[J]. 化工学报, 2021, 72(4): 2094-2101. |
[14] | 李超凡, 温玉娟, 曹楠, 孙东, 宋晓明, 杨悦锁. 耐低温对硝基苯酚降解菌的降解动力学研究[J]. 化工学报, 2021, 72(3): 1692-1701. |
[15] | 杨诗, 蔡阳, 李长平, 李雪辉. 磷钨酸负载锆基金属有机骨架PTA@MOF-808的制备及其吸附脱硫性能[J]. 化工学报, 2021, 72(3): 1722-1731. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||