化工学报 ›› 2020, Vol. 71 ›› Issue (8): 3594-3601.DOI: 10.11949/0438-1157.20200345
徐坤1,2(),方阳1,宫梦1,陈应泉1,陈旭1,王贤华1,杨海平1(),陈汉平1
收稿日期:
2020-04-01
修回日期:
2020-05-20
出版日期:
2020-08-05
发布日期:
2020-08-05
通讯作者:
杨海平
作者简介:
徐坤 (1995—),男,硕士研究生,Kun XU1,2(),Yang FANG1,Meng GONG1,Yingquan CHEN1,Xu CHEN1,Xianhua WANG1,Haiping YANG1(),Hanping CHEN1
Received:
2020-04-01
Revised:
2020-05-20
Online:
2020-08-05
Published:
2020-08-05
Contact:
Haiping YANG
摘要:
催化热解制备左旋葡萄糖酮(LGO)是生物质制备高值化学品的重要方法。开发了一种新型的金属磺化炭催化剂用于高效制备LGO,并研究了热解温度、催化剂与生物质的比例以及金属盐类型对左旋葡萄糖酮生成的影响,研究表明:金属磺化炭明显促进了LGO的选择性,在Ce-SC催化剂作用下,催化热解温度为300℃、原料/催化剂比例为1∶1时,LGO的含量达到了82%;在Co-SC催化剂作用下,催化热解温度为400℃、原料/催化剂比例为1∶1时,LGO的含量达到了64%。
中图分类号:
徐坤, 方阳, 宫梦, 陈应泉, 陈旭, 王贤华, 杨海平, 陈汉平. 葡萄糖催化热解制备左旋葡萄糖酮特性研究[J]. 化工学报, 2020, 71(8): 3594-3601.
Kun XU, Yang FANG, Meng GONG, Yingquan CHEN, Xu CHEN, Xianhua WANG, Haiping YANG, Hanping CHEN. Study on the catalytic pyrolysis of glucose to prepare levoglucosenone[J]. CIESC Journal, 2020, 71(8): 3594-3601.
催化剂 | SBET/ (m2/g) | SMicro/ (m2/g) | (SMicro/SBET)/% | DAverage/nm | 孔容/ (cm3/g) |
---|---|---|---|---|---|
SC | 166.43 | 128.55 | 0.77 | 2.216 | 0.092 |
Ni-SC | 137.07 | 116.50 | 0.85 | 2.084 | 0.071 |
Ce-SC | 156.25 | 127.55 | 0.82 | 2.146 | 0.084 |
Cu-SC | 142.31 | 121.58 | 0.85 | 2.034 | 0.072 |
Al-SC | 141.86 | 124.67 | 0.88 | 1.946 | 0.069 |
Fe-SC | 146.87 | 112.00 | 0.76 | 2.271 | 0.083 |
Co-SC | 214.59 | 165.04 | 0.77 | 2.230 | 0.120 |
表1 金属磺化炭孔隙结构参数
Table 1 BET data of metal sulfonated carbon
催化剂 | SBET/ (m2/g) | SMicro/ (m2/g) | (SMicro/SBET)/% | DAverage/nm | 孔容/ (cm3/g) |
---|---|---|---|---|---|
SC | 166.43 | 128.55 | 0.77 | 2.216 | 0.092 |
Ni-SC | 137.07 | 116.50 | 0.85 | 2.084 | 0.071 |
Ce-SC | 156.25 | 127.55 | 0.82 | 2.146 | 0.084 |
Cu-SC | 142.31 | 121.58 | 0.85 | 2.034 | 0.072 |
Al-SC | 141.86 | 124.67 | 0.88 | 1.946 | 0.069 |
Fe-SC | 146.87 | 112.00 | 0.76 | 2.271 | 0.083 |
Co-SC | 214.59 | 165.04 | 0.77 | 2.230 | 0.120 |
No. | RT/min | Compounds | Peak area/% | |
---|---|---|---|---|
Non-catalytic | SC | |||
1 | 5.47 | 3(2H)-furanone | 6.05 | — |
2 | 6.27 | furfural | 24.05 | 7.85 |
3 | 12.95 | neopentyl 2-methylbutanoate | 1.55 | — |
4 | 14.80 | levoglucosenone | 1.33 | 46.43 |
5 | 15.77 | 4H-pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl- | 1.95 | — |
6 | 17.87 | 1,4:3,6-dianhydro-α-D-glucopyranose | 3.70 | 22.27 |
7 | 18.34 | 5-hydroxymethylfurfural | 12.56 | — |
8 | 19.80 | cyclopropanecarboxamide, N-2-methylpropyl | — | 1.74 |
9 | 25.42 | β-D-glucopyranose, 1,6-anhydro- | 5.76 | 17.07 |
表2 在催化热解温度为400℃、葡萄糖/催化剂比例为1∶1时热解产物的分布
Table 2 Distribution of pyrolysis products at the pyrolysis temperature of 400℃ and glucose / catalyst ratio of 1∶1
No. | RT/min | Compounds | Peak area/% | |
---|---|---|---|---|
Non-catalytic | SC | |||
1 | 5.47 | 3(2H)-furanone | 6.05 | — |
2 | 6.27 | furfural | 24.05 | 7.85 |
3 | 12.95 | neopentyl 2-methylbutanoate | 1.55 | — |
4 | 14.80 | levoglucosenone | 1.33 | 46.43 |
5 | 15.77 | 4H-pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl- | 1.95 | — |
6 | 17.87 | 1,4:3,6-dianhydro-α-D-glucopyranose | 3.70 | 22.27 |
7 | 18.34 | 5-hydroxymethylfurfural | 12.56 | — |
8 | 19.80 | cyclopropanecarboxamide, N-2-methylpropyl | — | 1.74 |
9 | 25.42 | β-D-glucopyranose, 1,6-anhydro- | 5.76 | 17.07 |
图5 葡萄糖/催化剂比例为2∶1~1∶2,Ce-SC作催化剂时热解产物峰面积占比及峰面积
Fig.5 Peak area ratio and peak area of pyrolysis products when Ce-SC is used as the catalyst and the glucose / catalyst ratio is 2∶1—1∶2
1 | Chen X, Chen Y Q, Yang H P, et al. Catalytic fast pyrolysis of biomass: selective deoxygenation to balance the quality and yield of bio-oil[J]. Bioresource Technology, 2019, 273(2): 153-158. |
2 | Chen X, Chen Y Q, Yang H P, et al. Fast pyrolysis of cotton stalk biomass using calcium oxide[J]. Bioresource Technology, 2017, 233(6): 15-20. |
3 | Nolte M W, Shanks B H. A perspective on catalytic strategies for deoxygenation in biomass pyrolysis[J]. Energy Technology, 2017, 5(1): 7-18. |
4 | 朱晨杰, 杜风光, 应汉杰, 等. 木质纤维素基平台化合物催化转化制备液体燃料及燃料添加剂[J].化工学报, 2015, 66(8): 2784-2794. |
Zhu C J, Du F G, Ying H J, et al. Catalytic production of liquid hydrocarbon fuels and fuel additives from lignocellulosic platform molecules[J]. CIESC Journal, 2015, 66(8): 2784-2794. | |
5 | Halpern Y, Riffer R, Broido A. Levoglucosenone (1, 6-anhydro-3, 4-dideoxy-Δ3-β-D-pyranosen-2-one). Major product of the acid-catalyzed pyrolysis of cellulose and related carbohydrates[J].The Journal of Organic Chemistry, 1973, 38(2): 204-209. |
6 | Doroshenko A, Pylypenko I, Heaton K, et al. Selective microwave-assisted pyrolysis of cellulose towards levoglucosenone with clay catalysts[J]. Journal Citation Reports, 2019, 12(24): 5224-5227. |
7 | Srotti A M, Zanardi M M, Spanevello R A, et al. Recent applications of levoglucosenone as chiral synthon[J]. Current Organic Synthesis, 2012, 9(4): 439-459. |
8 | Miftakhov M S, Gaisina I N.Levoglucosenone: the properties, reactions and use in fine organic synthesis[J].Russian Chemical Reviews, 1994, 63(10): 869-882. |
9 | Srotti A M, Zanardi M M, Spanevello R A, et al. Recent applications of levoglucosenone as chiral synthon[J]. Current Organic Synthesis, 2012, 9(4): 439-459. |
10 | 卫新来, 隋先伟, 俞志敏, 等. 生物质催化热解制备左旋葡萄糖酮的研究进展[J].化工进展, 2014, 33(4): 873-877. |
Wei X L, Sui X W, Yu Z M, et al. Progress in catalytic pyrolysis of biomass for levoglucosenone[J]. Chemical Industry and Engineering Progress, 2014, 33(4): 873-877. | |
11 | Dobele G, Rossinskaja G, Telysheva G, et al. Cellulose dehydration and depolymerization reactions during pyrolysis in the presence of phosphoric acid[J]. Journal of Analytical and Applied Pyrolysis, 1999, 49(1/2): 307-317. |
12 | Dobele G, Meier D, Faix O, et al. Volatile products of catalytic flash pyrolysis of celluloses[J]. Journal of Analytical and Applied Pyrolysis, 2001, 58(4): 453-463. |
13 | Dobele G, Dizhbite T, Rossinskaja G, et al. Pre-treatment of biomass with phosphoric acid prior to fast pyrolysis: a promising method for obtaining 1, 6-anhydrosaccharides in high yields[J].Journal of Analytical and Applied Pyrolysis, 2003, 68(8): 197-211. |
14 | Dobele G, Rossinskaja G, Diazbite T, et al. Application of catalysts for obtaining l, 6-anhydrosaccharides from cellulose and wood by fast pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2005, 74(1/2): 40l-405. |
15 | Fabbri D, Torri C, Baravelli V. Effect of zeolites and nanopowder metaloxides on the distribution of chiral anhydrosugars evolved from pyrolysis of cellulose: an analytical study[J]. Journal of Analytical and Applied Pyrolysis, 2007, 80(1): 24-29. |
16 | Fu Q, Argyropoulos D S, Tilotta D C, et al. Understanding the pyrolysis of CCA-treated wood(Ⅱ): Effect of phosphoric acid[J]. Journal of Analytical and Applied Pyrolysis, 2008, 82(1): 140-144. |
17 | Wang Z, Lu Q, Zhu X F, et al. Catalytic fast pyrolysis of cellulose to prepare levoglucosenone using sulfated zirconia[J]. ChemSusChem, 2011, 4(1): 79-84. |
18 | 陆强, 张栋, 朱锡峰.四种金属氯化物对纤维素快速热解的影响(Ⅱ): 机理分析[J].化工学报, 2010, 61(4): 1025-1032. |
Lu Q, Zhang D, Zhu X F. Catalytic effects of four metal chlorides on fast pyrolysis of cellulose (Ⅱ): Mechanism analysis[J]. CIESC Journal, 2010, 61(4): 1025-1032. | |
19 | Kudo S, Zhou Z W, Norinaga K, et al. Efficient levoglucosenone production by catalytic pyrolysis of cellulose mixed with ionic liquid[J]. Green Chemistry, 2011, 13(11): 3306-3311. |
20 | 郑杨清, 郁强强, 王海涛, 等. 沼渣制备生物炭吸附沼液中氨氮[J].化工学报, 2014, 65(5): 1856-1861. |
Zheng Y Q, Yu Q Q, Wang H T, et al. Preparation of biochars from biogas residue and adsorption of ammonia-nitrogen in biogas slurry[J]. CIESC Journal, 2014, 65(5): 1856-1861. | |
21 | 王贤华, 崔翔, 李允超, 等.热解炭在线催化玉米秆热解实验研究[J].太阳能学报, 2019, 40(11): 3172-3178. |
Wang X H, Cui X, Li Y C, et al. Study on online catalytic pyrolysis of corn stalk using pyrolytic char[J].Acta Energiae Solaries Sinica, 2019, 40(11): 3172-3178. | |
22 | 王怀臣, 冯雷雨, 陈银广. 废物资源化制备生物质炭及其应用的研究进展[J]. 化工进展, 2012, 31(4): 907-914. |
Wang H C, Feng L Y, Chen Y G. Advances in biochar production from wastes and its applications[J]. Chemical Industry and Engineering Progress, 2012, 31(4): 907-914. | |
23 | 张智博, 董长青, 叶小宁, 等. 利用固体磷酸催化热解纤维素制备左旋葡萄糖酮[J]. 化工学报, 2014, 65(3): 912-920. |
Zhang Z B, Dong C Q, Ye X N, et al. Preparation of levoglucosenone by catalytic pyrolysis of cellulose over solid phosphoric acid[J]. CIESC Journal, 2014, 65(3): 912-920. | |
24 | Sharghi H, Shiri P, Aberi M. An overview on recent advances in the synthesis of sulfonated organic materials, sulfonated silica materials, and sulfonated carbon materials and their catalytic applications in chemical processes[J]. Beilstein Journal of Organic Chemistry, 2018, 14(11): 2745-2770. |
25 | 马兵兵. 竹炭碳磺酸的制备及其在纤维素水解中的应用[D].杭州: 浙江工业大学, 2017. |
Ma B B. Preparation of bamboo carbon-based solid acid and its applications in catalytic hydrolysis of cellulose[D]. Hangzhou: Zhejiang University of Technology, 2017. | |
26 | Lu Q, Yang X C, Dong C Q, et al. Influence of pyrolysis temperature and time on the cellulose fast pyrolysis products: analytical Py-GC/MS study[J]. Journal of Analytical and Applied Pyrolysis, 2011, 92(2): 430-438. |
27 | Paine J B, Pithawalla Y B, Naworal J D. Carbohydrate pyrolysis mechanisms from isotopic labeling[J]. Journal of Analytical and Applied Pyrolysis, 2008, 80(2): 297-311. |
28 | Hu B, Lu Q, Wu Y T, et al. Insight into the formation mechanism of levoglucosenone in phosphoric acid-catalyzed fast pyrolysis of cellulose[J]. Journal of Energy Chemistry, 2020, 43(4): 78-89. |
29 | Maliekkal V, Maduskar S, Saxon D J, et al. Activation of cellulose via cooperative hydroxyl-catalyzed transglycosylation of glycosidic bonds[J]. ACS Catalysis, 2019, 9(3): 1943-1955. |
30 | Lu Q, Zhu X F. Production of levoglucosenone from pyrolysis of cellulose catalyzed by solid superacids[J]. Journal of Fuel Chemistry and Technology, 2011, 39(6): 425-431. |
31 | Lu Q, Ye X N, Zhang Z B, et al. Catalytic fast pyrolysis of cellulose and biomass to produce levoglucosenone using magnetic SO42-/TiO2-Fe3O4[J]. Bioresource Technology, 2014, 171(11): 10-15. |
32 | Lu Q, Zhang Y, Dong C Q, et al. The mechanism for the formation of levoglucosenone during pyrolysis of beta-D-glucopyranose and cellobiose: a density functional theory study[J]. Journal of Analytical and Applied Pyrolysis, 2014, 110(11): 34-43. |
[1] | 张静, 刘涛, 张伟, 储震宇, 金万勤. 一种新型分离传感膜的制备及其血糖的动态监测[J]. 化工学报, 2023, 74(1): 459-468. |
[2] | 徐飞翔, 蒋丽群, 郑安庆, 赵增立. 碳基固体酸催化纤维素热解制备左旋葡聚糖和左旋葡萄糖酮[J]. 化工学报, 2022, 73(3): 1166-1172. |
[3] | 宫梦, 方阳, 陈伟, 陈应泉, 陆强, 杨海平, 陈汉平. 纤维素组分对氨基酸热解的影响[J]. 化工学报, 2020, 71(5): 2312-2319. |
[4] | 项小燕, 危依, 裴宝有, 丘荣星, 陈晓燕, 赵朝阳, 罗小燕, 林金清. 碱性离子液体协同配合剂催化葡萄糖异构化制备果糖[J]. 化工学报, 2020, 71(1): 290-296. |
[5] | 王丽, 王兴杰, 李浩, 陈永伟, 李忠. 葡萄糖基多孔碳材料对CO2/CH4的分离性能[J]. 化工学报, 2018, 69(2): 733-740. |
[6] | 苏叶, 鲍宗必, 张治国, 邢华斌, 杨启炜, 苏宝根, 杨亦文, 任其龙. L酸/B酸可调的磺酸功能化MIL-101(Cr)材料催化葡萄糖脱水 制备5-羟甲基糠醛[J]. 化工学报, 2016, 67(7): 2799-2807. |
[7] | 张冬梅, 程文萍, 张明胜, 崔杏雨, 马静红, 李瑞丰. AC/X-G吸附剂的制备及CH4/N2吸附分离性能[J]. 化工学报, 2016, 67(6): 2386-2392. |
[8] | 于志辉, 黄鹏飞, 汪夏燕. 无定形介孔磷酸锆固定葡萄糖氧化酶的直接电化学[J]. 化工学报, 2016, 67(5): 2161-2168. |
[9] | 饶超, 董依慧, 庄伟, 邬新兵, 洪启亮, 刘畅, 陆小华. TiO2纳米管阵列孔径调控葡萄糖氧化酶生物传感器性能[J]. 化工学报, 2016, 67(10): 4324-4333. |
[10] | 王小艳, 樊艳爽, 韩蓓佳, 冯旭东, 李春. 糖基化改造β-葡萄糖醛酸苷酶的热稳定性[J]. 化工学报, 2015, 66(9): 3669-3677. |
[11] | 张阳阳, 罗璇, 庄绪丽, 仝新利. 混合酸催化葡萄糖选择性转化合成乙酰丙酸甲酯[J]. 化工学报, 2015, 66(9): 3490-3495. |
[12] | 吕波, 冯旭东, 李春. β-葡萄糖醛酸苷酶键选择性高效筛选体系的构建与应用[J]. 化工学报, 2015, 66(8): 3189-3194. |
[13] | 汤恒, 黄申, 冯旭东, 李春. 理性设计提高β-葡萄糖醛酸苷酶的热稳定性[J]. 化工学报, 2015, 66(6): 2205-2211. |
[14] | 万丽花, 姚忠, 倪芳, 韦敏, 周治, 王浩绮, 孙芸, 仲兆祥. 两相体系中β-葡萄糖苷酶催化栀子苷水解制备京尼平[J]. 化工学报, 2014, 65(9): 0-0. |
[15] | 万丽花, 姚忠, 倪芳, 韦敏, 周治, 王浩绮, 孙芸, 仲兆祥. 两相体系中β-葡萄糖苷酶催化栀子苷水解制备京尼平[J]. 化工学报, 2014, 65(9): 3583-3591. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||