化工学报 ›› 2020, Vol. 71 ›› Issue (5): 2312-2319.DOI: 10.11949/0438-1157.20191391
宫梦1(),方阳1,陈伟1,陈应泉1,陆强3,杨海平1(),陈汉平1,2
收稿日期:
2019-11-15
修回日期:
2020-02-23
出版日期:
2020-05-05
发布日期:
2020-05-05
通讯作者:
杨海平
作者简介:
宫梦(1996—),女,硕士研究生,基金资助:
Meng GONG1(),Yang FANG1,Wei CHEN1,Yingquan CHEN1,Qiang LU3,Haiping YANG1(),Hanping CHEN1,2
Received:
2019-11-15
Revised:
2020-02-23
Online:
2020-05-05
Published:
2020-05-05
Contact:
Haiping YANG
摘要:
本研究旨在揭示生物质热解过程中纤维素组分对含氮组分热解过程的影响,采用快速热解-气相色谱/质谱联用与密度泛函理论计算相结合分析生物质主要含氮组分(苯丙氨酸和谷氨酸)、纤维素单元葡萄糖和混合物热解过程中产物析出特性以及分布规律,揭示葡萄糖对氨基酸热解作用机理。研究发现葡萄糖与苯丙氨酸主要发生聚合反应;还会起到供氢的作用,促进苯丙氨酸/苯乙胺发生脱氨反应生成苯乙烯;而和谷氨酸主要发生聚合反应,会促进谷氨酸发生脱羧反应形成2-吡咯烷酮。计算结果表明,葡萄糖C1位羟基为苯乙胺C2连接的氨基提供氢,可以降低苯乙胺脱氨的反应能垒;链式葡萄糖醛基与谷氨酸氨基结合,可以降低脱羧的反应能垒,促进2-吡咯烷酮的生成。
中图分类号:
宫梦, 方阳, 陈伟, 陈应泉, 陆强, 杨海平, 陈汉平. 纤维素组分对氨基酸热解的影响[J]. 化工学报, 2020, 71(5): 2312-2319.
Meng GONG, Yang FANG, Wei CHEN, Yingquan CHEN, Qiang LU, Haiping YANG, Hanping CHEN. Effect of cellulose composition on amino acids pyrolysis[J]. CIESC Journal, 2020, 71(5): 2312-2319.
1 | Adsul M G, Singhvi M S, Gaikaiwari S A, et al. Development of biocatalysts for production of commodity chemicals from lignocellulosic biomass[J]. Bioresource Technology, 2011, 102(6): 4304-4312. |
2 | 覃伟中, 李强, 朱兵, 等. 生物炼制与石油炼制一体化——促进我国生物质能源发展的有效对策[J]. 化工学报, 2010, 61(7): 65-70. |
Qin W Z, Li Q, Zhu B, et al. Integration of biorefinery and oil refinery: an effective way of promoting development of biomass energy in China[J]. CIESC Journal, 2010, 61(7): 65-70. | |
3 | Yang Y, Zhang P, Zhang W, et al. Quantitative appraisal and potential analysis for primary biomass resources for energy utilization in China[J]. Renewable & Sustainable Energy Reviews, 2010, 14(9): 3050-3058. |
4 | Lange J P. Lignocellulose conversion: an introduction to chemistry, process and economics[J]. Biofuels Bioproducts & Biorefining, 2010, 1(1): 39-48. |
5 | 朱锡锋. 生物质热解液化技术研究与发展趋势[J]. 新能源进展, 2013, 1(1): 32-37. |
Zhu X F. Research development of biomass fast pyrolysis[J]. Advances in New and Renewable Energy, 2013, 1(1): 32-37. | |
6 | Laskar D D, Yang B, Wang H, et al. Pathways for biomass-derived lignin to hydrocarbon fuels[J]. Biofuels Bioproducts & Biorefining, 2013, 7(5): 602-626. |
7 | Vanholme B, Desmet T, Ronsse F, et al. Towards a carbon-negative sustainable bio-based economy[J]. Front Plant Sci., 2013, 4: 1-17. |
8 | 王芸, 邵珊珊, 张会岩, 等. 生物质模化物催化热解制取烯烃和芳香烃[J]. 化工学报, 2015, 66(8): 276-282. |
Wang Y, Shao S S, Zhang H Y, et al. Catalytic pyrolysis of biomass model compounds to olefins and aromatic hydrocarbons[J]. CIESC Journal, 2015, 66(8): 276-282. | |
9 | 张秀霞, 周志军, 周俊虎, 等. 含氮焦炭异相还原NO反应机理的密度泛函理论研究[J]. 化工学报, 2011, 62(4): 166-172. |
Zhang X X, Zhou Z J, Zhou J H, et al. Density functional theoretical study of heterogeneous reduction mechanism of NO on nitrogen-containing char surface[J]. CIESC Journal, 2011, 62(4): 166-172. | |
10 | Tsubouchi N, Ohtsuka Y. Nitrogen release during high temperature pyrolysis of coals and catalytic role of calcium in N formation[J]. Fuel, 2002, 81(18): 2335-2342. |
11 | 赵聪, 阎志中, 杨颂, 等. 煤热解过程中氮元素迁移规律影响因素[J]. 应用化工, 2018, 47(4): 208-211. |
Zhao C, Yan Z Z, Yang S, et al. Affecting the migration of nitrogen elements during coal pyrolgsis[J]. Applied Chemical Industry, 2018, 47(4): 208-211. | |
12 | 赵宗彬, 李文, 李保庆. 矿物质对煤焦燃烧过程中NO释放规律的影响[J]. 化工学报, 2003, 54(1): 100-106. |
Zhao Z B, Li W, Li B Q. Effect of mineral matter on release of no during coal char combustion[J]. Journal of Chemical Industry and Engineering(China), 2003, 54(1): 100-106. | |
13 | Chen W, Yang H, Chen Y, et al. Transformation of nitrogen and evolution of N-containing species during algae pyrolysis[J]. Environmental Science and Technology, 2017, 51(11), 6570-6579. |
14 | Chen H, Si Y, Chen Y, et al. NOx precursors from biomass pyrolysis: Distribution of amino acids in biomass and Tar-N during devolatilization using model compounds[J]. Fuel, 2017, 187: 367-375. |
15 | Ren Q, Zhao C, Chen X, et al. NOx and N2O precursors (NH3 and HCN) from biomass pyrolysis: co-pyrolysis of amino acids and cellulose, hemicellulose and lignin[J]. Proceedings of the Combustion Institute, 2011, 33(2): 1715-1722. |
16 | 黎新. 谷氨酸热分解机理的研究[J]. 西南师范大学学报(自然科学版), 1999, 24(4): 438-442. |
Li X. Studies on thermolytic mechanism of glutamic acid[J].Journal of Southwest China Normal University (Natural Science Edition), 1999, 24(4): 438-442. | |
17 | Li J, Liu Y, Shi J, et al. The investigation of thermal decomposition pathways of phenylalanine and tyrosine by TG-FTIR[J]. Thermochimica Acta, 2007, 467(1): 20-29. |
18 | 郝菊芳, 郭吉兆, 谢复炜, 等. 葡萄糖对天冬酰胺裂解生成氢氰酸的影响机理[J]. 烟草科技, 2014, 58(1): 34-39. |
Hao J F, Guo J Z, Xie F W, et al. Influence mechanism of glucose on formation of hydrogen cyanide from asparagine pyrolysis[J]. Tobacco Chemistry, 2014, 58(1): 34-39. | |
19 | Hao J, Guo J, Xie F, et al. Correlation of hydrogen cyanide formation with 2, 5-diketopiperazine and nitrogen heterocyclic compounds from co-pyrolysis of glycine and glucose/fructose[J]. Energy & Fuels, 2013, 27(8): 4723-4728. |
20 | Bao X, Chen Z, Xie H. Density functional study on the mechanism of amadori rearrangement reaction[J]. Chinese Journal of Structral Chemistry, 2011, 30(6): 827-832. |
21 | Rozenberg M, Shoham G, Reva I, et al. A correlation between the proton stretching vibration red shift and the hydrogen bond length in polycrystalline amino acids and peptides[J]. Physical Chemistry Chemical Physics, 2005, 7(11): 2376-83. |
22 | Shipar M A H. DFT studies on fructose and glycine maillard reaction: formation of the heyns rearrangement products in the initial stage[J]. Journal of the Iranian Chemical Society, 2011, 8(2): 433-448. |
23 | Solís-Calero C, Ortega-Castro J, Hernández-Laguna A, et al. A DFT study of the Amadori rearrangement above a phosphatidylethanolamine surface: comparison to reactions in aqueous environment[J]. The Journal of Physical Chemistry C, 2013, 117(16): 8299-8309. |
24 | 龚千代, 刘亮, 田红, 等. 甘氨酸高温热解含氮产物生成机理及实验研究[J]. 西北大学学报(自然科学版), 2016, (5): 695-701. |
Gong Q D, Liu L, Tian H, et al. Theoretic and experiment study on nitrogen-containing products of glycine during high temperature pyrolysis[J]. Journal of Northwest University(Natural Science Edition), 2016, (5): 695-701. | |
25 | Wang S, Guo X, Liang T, et al. Mechanism research on cellulose pyrolysis by Py-GC/MS and subsequent density functional theory studies[J]. Bioresource Technology, 2012, 104: 722-728. |
26 | Zhang X, Li J, Yang W, et al. Formation mechanism of levoglucosan and formaldehyde during cellulose pyrolysis[J]. Energy & Fuels, 2011, 25(8): 3739-3746. |
27 | Kang P, Qin W, Fu Z Q, et al. Generation mechanism of NOx and N2O precursors (NH3 and HCN) from aspartic acid pyrolysis: a DFT study[J]. International Journal of Agricultual and Biological Engineering, 2016, 5(9): 166-176. |
28 | Chen H, Si Y, Chen Y, et al. NOx precursors from biomass pyrolysis: distribution of amino acids in biomass and Tar-N during devolatilization using model compounds[J]. Fuel, 2017, 187: 367-375. |
29 | Frisch M J, Trucks G W, Schlegel H B,et al. Gaussian 09: Revision D01[CP]. Wallingford CT: Gaussian, Inc., 2013. |
30 | Gonzalez C, Schlegel H B. An improved algorithm for reaction path following[J]. Journal of Chemical Physics, 1989, 90(4): 2154-2161. |
31 | Choi S S, Ko J E. Analysis of cyclic pyrolysis products formed from amino acid monomer[J]. Journal of Chromatography A, 2011, 1218(46): 8443-8455. |
32 | Kibet J K, Khachatryan L, Dellinger B. Molecular products from the thermal degradation of glutamic acid[J]. J. Agric. Food Chem., 2013, 61(32): 7696-7704. |
33 | Wu H, Reeves-Mclaren N, Jones S, et al. Phase transformations of glutamic acid and its decomposition products[J]. Crystal Growth & Design, 2009, 10(2): 988-994. |
34 | Britt P F, Buchanan A C, Owens Jr C V, et al. Does glucose enhance the formation of nitrogen containing polycyclic aromatic compounds and polycyclic aromatic hydrocarbons in the pyrolysis of proline?[J]. Fuel, 2004, 83(11/12): 1417-1432. |
35 | Paine J B, Pithawalla Y B, Naworal J D. Carbohydrate pyrolysis mechanisms from isotopic labeling (Part 4): The pyrolysis of D-glucose: the formation of furans[J]. Journal of Analytical & Applied Pyrolysis, 2008, 82(1): 10-41. |
36 | Zhang M H, Geng Z F, Yu Y Z. Density functional theory (DFT) study on the pyrolysis of cellulose: the pyran ring breaking mechanism[J]. Computational & Theoretical Chemistry, 2015, 1067: 13-23. |
37 | Hu B, Lu Q, Jiang X Y, et al. Pyrolysis mechanism of glucose and mannose: the formation of 5-hydroxymethyl furfural and furfural[J]. Journal of Energy Chemistry, 2018, 27(2): 486-501. |
38 | Wang S, Liu B, Su Q. Pyrolysis-gas chromatography/mass spectrometry as a useful technique to evaluate the pyrolysis pathways of phenylalanine[J]. Journal of Analytical and Applied Pyrolysis, 2004, 71(1): 393-403. |
39 | Hodge J E. Dehydrated foods, chemistry of browning reactions in model systems[J]. Journal of Agricultural and Food Chemistry, 1953, 1(15): 625-651. |
40 | Chen H P, Xie Y P, Chen W, al et, Investigation on co-pyrolysis of lignocellulosic biomass and amino acids using TG-FTIR and Py-GC/MS[J]. Energy Conversion and Management, 2019, 196: 320-329. |
41 | Sharma R K, Chan W G, Hajaligol M R. Product compositions from pyrolysis of some aliphatic α-amino acids[J]. Journal of Analytical and Applied Pyrolysis, 2006, 75(2): 69-81. |
42 | Ren Q, Zhao C. NOx and N2O precursors from biomass pyrolysis: nitrogen transformation from amino acid[J]. Environmental Science & Technology, 2012, 46(7): 4236-4240. |
43 | 朱文辉, 杨柳, 杨红燕, 等. TG-SPME-GC-MS研究谷氨酸和葡萄糖的固相美拉德反应[J]. 食品科学, 2010, (11): 98-103. |
Zhu W H, Yang L, Yang H Y, et al. Solid-phase Maillard reaction between L-ghtamic acid and glucose as determined by TG-SPME-GC-MS[J]. Food Science, 2010, (11): 98-103. | |
44 | Xu L J, Lu Q, Yao Q, et al. Production of 5-methylfurfual or furfural via thermal-catalytic conversion of fructose with pyrolytic solid residue-derived catalysts[J]. Chinese Science Bulletin, 2015, 60(16): 1530. |
[1] | 吴雷, 刘姣, 李长聪, 周军, 叶干, 刘田田, 朱瑞玉, 张秋利, 宋永辉. 低阶粉煤催化微波热解制备含碳纳米管的高附加值改性兰炭末[J]. 化工学报, 2023, 74(9): 3956-3967. |
[2] | 杨峥豪, 何臻, 常玉龙, 靳紫恒, 江霞. 生物质快速热解下行式流化床反应器研究进展[J]. 化工学报, 2023, 74(6): 2249-2263. |
[3] | 衣思敏, 马亚丽, 刘伟强, 张金帅, 岳岩, 郑强, 贾松岩, 李雪. 微晶菱镁矿蒸氨及水化动力学研究[J]. 化工学报, 2023, 74(4): 1578-1586. |
[4] | 陈瑞哲, 程磊磊, 顾菁, 袁浩然, 陈勇. 纤维增强树脂复合材料化学回收技术研究进展[J]. 化工学报, 2023, 74(3): 981-994. |
[5] | 张娜, 潘鹤林, 牛波, 张亚运, 龙东辉. 酚醛树脂热裂解反应机理的密度泛函理论研究[J]. 化工学报, 2023, 74(2): 843-860. |
[6] | 张静, 刘涛, 张伟, 储震宇, 金万勤. 一种新型分离传感膜的制备及其血糖的动态监测[J]. 化工学报, 2023, 74(1): 459-468. |
[7] | 郝泽光, 张乾, 高增林, 张宏文, 彭泽宇, 杨凯, 梁丽彤, 黄伟. 生物质与催化裂化油浆共热解协同作用研究[J]. 化工学报, 2022, 73(9): 4070-4078. |
[8] | 邵健, 冯军宗, 柳凤琦, 姜勇刚, 李良军, 冯坚. 酚醛树脂基炭微球结构调控与功能化制备研究进展[J]. 化工学报, 2022, 73(9): 3787-3801. |
[9] | 杜峰, 尹思琦, 罗辉, 邓文安, 李传, 黄振薇, 王文静. H2在Mo x S y 团簇上吸附解离的尺寸效应研究[J]. 化工学报, 2022, 73(9): 3895-3903. |
[10] | 陈晨, 杨倩, 陈云, 张睿, 刘冬. 不同氧浓度下煤挥发分燃烧的化学动力学研究[J]. 化工学报, 2022, 73(9): 4133-4146. |
[11] | 肖皓宇, 杨海平, 张雄, 陈应泉, 王贤华, 陈汉平. 塑料催化热解制备高附加值产品的研究进展[J]. 化工学报, 2022, 73(8): 3461-3471. |
[12] | 唐恺鸿, 何晓峰, 徐桂秋, 于洋, 刘啸凤, 葛铁军, 张爱玲. 酚醛泡沫的燃烧行为及阻燃研究进展[J]. 化工学报, 2022, 73(8): 3483-3500. |
[13] | 俞夏琪, 冯格, 赵金燕, 李嘉远, 邓声威, 郑靖楠, 李雯雯, 王亚秋, 沈榄, 刘旭, 徐威威, 王建国, 王式彬, 姚子豪, 毛成立. 基体(TDI-TMP-T313)与氧化剂(AP)相互作用的第一性原理研究[J]. 化工学报, 2022, 73(8): 3511-3517. |
[14] | 赵继昊, 唐伟强, 徐小飞, 赵双良, 贺炅皓. 高分子复合材料中键合剂在不同纳米填料表面的吸附能计算[J]. 化工学报, 2022, 73(7): 3174-3181. |
[15] | 陈永安, 周安宁, 李云龙, 石智伟, 贺新福, 焦卫红. 磁性MgFe2O4及其核壳催化剂制备与煤热解性能研究[J]. 化工学报, 2022, 73(7): 3026-3037. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 401
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 219
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||