[1] |
LEE K, MAZARE A, SCHMUKI P. One-dimensional titanium dioxide nanomaterials:nanotubes[J]. Chemical Reviews, 2014, 114(19):9385-9455.
|
[2] |
何传新, 袁安朋, 张黔玲, 等. 聚甲基丙烯酸甲酯-牛血清白蛋白核壳纳米粒子在金表面的吸附过程及在传感器中的应用[J]. 物理化学学报, 2012, 28(11):2721-2728. HE C X, YUAN A P, ZHANG Q L, et al. Adsorption of core-shell poly(methyl methacrylate)-bovine serum albumin nanoparticles on gold surface and its sensor application[J]. Acta Phys. -Chim. Sin., 2012, 28(11):2721-2728.
|
[3] |
KOSCHWANEZ H E, REICHERT W M. Tuning the sol-gel microenvironment for acetylcholinesterase encapsulation[J]. Biomaterials, 2007, 28(33):6771-6779.
|
[4] |
CLARK J R, LYONS L C. Electrode systems for continuous monitoring in cardiovascular surgery[J]. Ann Ny Acad, 1962, 102(1):29-45.
|
[5] |
CHEN C, XIE Q, YANG D, et al. Recent advances in electrochemical glucose biosensors:a review[J]. RSC Adv., 2013, 3(14):4473-4491.
|
[6] |
BANKAR S B, BULE M V, SINGHAL R S, et al. Glucose oxidase-an overview[J]. Biotechnol. Adv., 2009, 27(4):489-501.
|
[7] |
LIU H, LU X B, LI J, et al. Direct electrochemistry of glucose oxidase and electrochemical biosensing of glucose on quantum dots/carbon nanotubes electrodes[J]. Biosensors and Bioelectronics, 2007, 22(12):3203-3209.
|
[8] |
ZHANG Q, WU S Y, ZHANG L, et al. Fabrication of polymeric ionic liquid/graphene nanocomposite for glucose oxidase immobilization and direct electrochemistry[J]. Biosensors and Bioelectronics, 2011, 26(5):2632-2637.
|
[9] |
张谦, 吴抒遥, 何茂伟, 等. 磷脂修饰化的石墨烯纳米复合物的制备及其直接电化学研究[J]. 化学学报, 2012, 70:388-394. ZHANG Q, WU S Y, HE M W, et al. Biocompatible phospholipid modified graphene nanocomposite for direct electrochemistry of redox enzyme[J]. Acta Chim. Sinica, 2014, 70(3):388-394.
|
[10] |
BAO S, LI C M, ZANG J, et al. New nanostructured TiO2 for direct electrochemistry and glucose sensor applications[J]. Adv. Funct. Mater., 2008, 18(4):591-599.
|
[11] |
VITICOLI M, CURULLI A, CUSMA A, et al. Third-generation biosensors based on TiO2 nanostructured films[J]. Materials Science & Engineering, C:Biomimetic and Supramolecular Systems, 2006, 26(6):947-951.
|
[12] |
邬新兵, 蒙萌, 庄伟, 等. 介孔TiO2固定化葡萄糖氧化酶的直接电化学性能[J]. 化工学报, 2014, 65(5):1777-1783. WU X B, MENG M, ZHUANG W, et al. Direct electrochemistry of glucose oxidase immobilized on mesoporous TiO2[J]. CIESC Journal, 2014, 65(5):1777-1783.
|
[13] |
SI P, DING S J, YUAN J, et al. Hierarchically structured one-dimensional TiO2 for protein immobilization, direct electrochemistry and mediator-free glucose sensing[J]. ACS Nano, 2011, 5(9):7617-7649.
|
[14] |
YE Y K, DING S, YE Y W, et al. Enzyme-based sensing of glucose using a glassy carbon electrode modified with a one-pot synthesized nanocomposite consisting of chitosan, reduced graphene oxide and gold nanoparticles[J]. Microchimica Acta, 2015, 182(9/10):1783-1789.
|
[15] |
DUNG N Q, PATIL D, DUONG T T, et al. An amperometric glucose biosensor based on a GOx-entrapped TiO2-SWCNT composite[J]. Sensors and Actuators B, 2012, 166(10):103-109.
|
[16] |
WANG W, XIE Y B, XIA C, et al. Titanium dioxide nanotube arrays modified with a nanocomposite of silver nanoparticles and reduced graphene oxide for electrochemical sensing[J]. Microchimica Acta, 2014, 181(11/12):1325-1331.
|
[17] |
HOSSEINI M, MOMENI M M. Gold particles supported on self-organized nanotubular TiO2 matrix as highly active catalysts for electrochemical oxidation of glucose[J]. J. Solid State Electrochem., 2010, 14(6):1109-1115.
|
[18] |
YU Y Y, YANG Y, GU H, et al. Size-controllable preparation of palladium nanoparticles assembled on TiO2/graphene nanosheets and their electrocatalytic activity for glucose Biosensing[J]. Anal. Methods, 2013, 5(24):7049-7057.
|
[19] |
KANG Q, YANG L, CAI Q. An electro-catalytic biosensor fabricated with Pt-Au nanoparticle-decorated titania nanotube array[J]. Bioelectrochemistry, 2008, 74(1):62-65.
|
[20] |
FENG C, XU G, LIU H, et al. Glucose biosensors based on Ag nanoparticles modified TiO2 nanotube arrays[J]. J. Solid State Electr., 2014, 18(1):163-171.
|
[21] |
PABLO E V, JONAS S, JORDI M. Aqueous electrolytes confined within functionalized silica nanopores[J]. J. Chem. Phys., 2011, 135(10):1-7.
|
[22] |
胡凡, 郑学仿, 李钦宁, 等. 圆柱形纳米孔道内受限溶液I2/Ar的分子动力学模拟研究[J]. 化学学报, 2008, 27(21):2321-2328. HU F, ZHENG X F, LI Q N, et al. Molecular dynamics simulations of I2/Ar solution confined in a cylindrical nanotube[J]. Acta Chimica Sinica, 2008, 27(21):2321-2328.
|
[23] |
曹伟, 吕玲红, 黄亮亮, 等. 不同管径碳纳米管中CO2/CH4分离的分子模拟[J]. 化工学报, 2014, 65(5):1736-1743. CAO W, LÜ L H, HUANG L L, et al. Molecular simulations on diameter effect of carbon nanotube for separation of CO2/CH4[J]. CIESC Journal, 2014, 65(5):1736-1743.
|
[24] |
PARK S, LEE H, LEE S Y. Effect of peptide conformation on TiO2 biomineralization[J]. Dalton Trans., 2013, 42(38):13817-13820.
|
[25] |
KILLIAN M S, SCHMUKI P. Influence of bioactive linker molecules on protein adsorption[J]. Surf. Interface Anal., 2014, 46(S1):193-197.
|
[26] |
WANG W R, ZHU R R, XIAO R, et al. The electrostatic interactions between nano-TiO2 and trypsin inhibit the enzyme activity and change the secondary structure of trypsin[J]. Biol. Trace Elem. Res., 2011, 142(3):435-446.
|
[27] |
AN R, ZHUANG W, YANG Z H, et al. Protein adsorptive behavior on mesoporous titanium dioxide determined by geometrical topography[J]. Chemical Engineering Science, 2014, 117:146-155.
|
[28] |
董依慧, 安蓉, 庄伟, 等. 介孔TiO2对不同蛋白的选择性固定化性能[J]. 化工学报, 2014, 65(5):1950-1959. DONG Y H, AN R, ZHUANG W, et al. Mesoporous TiO2 with different selectivities of protein immobilization performance[J]. CIESC Journal, 2014, 65(5):1950-1959.
|
[29] |
纪拓, 陈献富, 季兴宏, 等. Al2O3@TiO2复合生物载体的制备及其BSA吸附特性[J]. 化工学报, 2014, 65(5):1920-1928. JI T, CHEN X F, JI X H, et al. Preparation of Al2O3@TiO2 biological composite support and adsorption of bovine serum albumin[J]. CIESC Journal, 2014, 65(5):1920-1928.
|
[30] |
李绍芬. 反应工程[M]. 3版. 北京:化学工业出版社, 2013:248-263. LI S F. Reaction Engineering[M]. 3rd ed. Beijing:Chemical Industry Press, 2013:248-263.
|
[31] |
曹楚南, 张鉴清. 电化学阻抗谱导论[M]. 北京:科学出版社, 2002:86-98. CAO C N, ZHANG J Q. An Introduction to Electrochemical Impedance Spectroscopy[M]. Beijing:Science Press, 2002:86-98.
|
[32] |
ZHANG S X, WANG N, YU H J, et al. Covalent attachment of glucose oxidase to an Au electrode modified with gold nanoparticles for use as glucose biosensor[J]. Bioelectrochemistry, 2005, 67(1):15-22.
|
[33] |
王丰, 府伟灵. 电化学阻抗谱在生物传感器研究中的应用进展[J]. 生物技术通信, 2007, 18(3):549-553. WANG F, FU W L. Application and advance of electrochemical impedance spectroscopy in the research of biosensors[J]. Letters in Biotechnology, 2007, 18(3):549-553.
|