化工学报 ›› 2023, Vol. 74 ›› Issue (1): 459-468.DOI: 10.11949/0438-1157.20221096
张静1(), 刘涛1, 张伟1,2, 储震宇1, 金万勤1()
收稿日期:
2022-08-02
修回日期:
2022-10-26
出版日期:
2023-01-05
发布日期:
2023-03-20
通讯作者:
金万勤
作者简介:
张静(1997—),女,博士研究生,202061104133@njtech.edu.cn
基金资助:
Jing ZHANG1(), Tao LIU1, Wei ZHANG1,2, Zhenyu CHU1, Wanqin JIN1()
Received:
2022-08-02
Revised:
2022-10-26
Online:
2023-01-05
Published:
2023-03-20
Contact:
Wanqin JIN
摘要:
血糖是临床手术中非常重要的生理指标之一,其不仅能灵敏反映术中患者的肾脏功能情况,还直接影响了术后愈合及生理康复。然而,现有的临床检测设备,如血糖仪、生化分析仪等,仅能间歇性反馈检测结果,难以实现术中病患血糖的动态监测。针对以上难题,提出将膜分离技术与生物传感技术相结合,构建可同步实现全血动态分离与血糖在线监测的分离传感膜。通过层层自组装法将普鲁士蓝(PB)纳米颗粒和金(Au)纳米颗粒原位共生长在钇稳定的氧化锆(YSZ)陶瓷中空纤维膜上,探究了不同组装层数的PB/Au对分离传感膜的表面亲疏水性的影响,评估最佳制膜条件下的血浆分离效果与血糖电化学检测性能。结果表明,当PB/Au组装层数为60层时所得分离传感膜具有最佳的亲水性,且能完全截留住全血中的红细胞、白细胞及血小板。该分离传感膜对葡萄糖的检测灵敏度为0.876 μA/(mmol/L),检测范围达到1~15 mmol/L,并能同步实现真实人血样本的动态分离与检测过程。
中图分类号:
张静, 刘涛, 张伟, 储震宇, 金万勤. 一种新型分离传感膜的制备及其血糖的动态监测[J]. 化工学报, 2023, 74(1): 459-468.
Jing ZHANG, Tao LIU, Wei ZHANG, Zhenyu CHU, Wanqin JIN. Preparation of a novel separation-sensing membrane and its dynamic monitoring of blood glucose[J]. CIESC Journal, 2023, 74(1): 459-468.
图5 (a) YSZ支撑体以及PB/Au/YSZ分离传感膜的FT-IR谱图;(b) PB/Au/YSZ分离传感膜的XPS全谱图;(c), (d) Fe 2p 和Au 4f 的XPS精细谱
Fig.5 (a) FT-IR spectra of YSZ support and PB/Au/YSZ separation-sensing membrane; (b) XPS full spectra of PB/Au/YSZ separation-sensing membrane; (c), (d) XPS spectra of Fe 2p and Au 4f
图11 (a) PB/Au/YSZ分离传感膜对不同浓度葡萄糖的DPV响应曲线;(b) DPV峰强度变化量与葡萄糖浓度的线性拟合曲线
Fig.11 (a) DPV curves of PB/Au/YSZ separation-sensing membrane toward various glucose concentrations; (b) the calibration curve of DPV peak current change and glucose concentration
项目 | 序号 | 红细胞 | 白细胞 | 血小板 | 血红蛋白 |
---|---|---|---|---|---|
YSZ | 1 | 1×109/L | 0 | 28×109/L | 0 |
2 | 0 | 0 | 12×109/L | 0 | |
3 | 0 | 0 | 8×109/L | 0 | |
PB/Au/YSZ | 4 | 0 | 0 | 0 | 0 |
5 | 0 | 0 | 0 | 0 | |
6 | 0 | 0 | 0 | 0 |
表1 YSZ空白膜及PB/Au/YSZ膜分离效果测试
Table 1 Separation effect test of YSZ blank membrane and PB/Au/YSZ membrane
项目 | 序号 | 红细胞 | 白细胞 | 血小板 | 血红蛋白 |
---|---|---|---|---|---|
YSZ | 1 | 1×109/L | 0 | 28×109/L | 0 |
2 | 0 | 0 | 12×109/L | 0 | |
3 | 0 | 0 | 8×109/L | 0 | |
PB/Au/YSZ | 4 | 0 | 0 | 0 | 0 |
5 | 0 | 0 | 0 | 0 | |
6 | 0 | 0 | 0 | 0 |
1 | Lee H, Hong Y J, Baik S, et al. Enzyme-based glucose sensor: from invasive to wearable device[J]. Advanced Healthcare Materials, 2018, 7(8): e1701150. |
2 | Yoo E H, Lee S Y. Glucose biosensors: an overview of use in clinical practice[J]. Sensors, 2010, 10(5): 4558-4576. |
3 | Gordon C. Blood glucose monitoring in diabetes: rationale and procedure[J]. British Journal of Nursing, 2019, 28(7): 434-439. |
4 | Tang L, Chang S J, Chen C J, et al. Non-invasive blood glucose monitoring technology: a review[J]. Sensors, 2020, 20(23): 6925. |
5 | Alhaddad A Y, Aly H, Gad H, et al. Sense and learn: recent advances in wearable sensing and machine learning for blood glucose monitoring and trend-detection[J]. Frontiers in Bioengineering and Biotechnology, 2022, 10: 876672. |
6 | Bruen D, Delaney C, Florea L, et al. Glucose sensing for diabetes monitoring: recent developments[J]. Sensors, 2017, 17(8): E1866. |
7 | Kesavadev J, Misra A, Saboo B, et al. Blood glucose levels should be considered as a new vital sign indicative of prognosis during hospitalization[J]. Diabetes & Metabolic Syndrome, 2021, 15(1): 221-227. |
8 | Park C S. Predictive roles of intraoperative blood glucose for post-transplant outcomes in liver transplantation[J]. World Journal of Gastroenterology, 2015, 21(22): 6835-6841. |
9 | Chen J, Wu C H, Wang X H, et al. The impact of COVID-19 on blood glucose: a systematic review and meta-analysis[J]. Frontiers in Endocrinology, 2020, 11: 574541. |
10 | Xiao F, Zhou Y C, Zhang M B, et al. Hyperglycemia and blood glucose deterioration are risk factors for severe COVID-19 with diabetes: a two-center cohort study[J]. Journal of Medical Virology, 2022, 94(5): 1967-1975. |
11 | Chu Z Y, Zhang W, You Q N, et al. A separation-sensing membrane performing precise real-time serum analysis during blood drawing[J]. Angewandte Chemie International Edition, 2020, 59(42): 18701-18708. |
12 | 徐南平. 面向应用过程的陶瓷膜材料设计、制备与应用[M]. 北京: 科学出版社, 2005. |
Xu N P. Process-Oriented Design, Preparation and Application of Ceramic Membranes[M]. Beijing: Science Press, 2005. | |
13 | 邢卫红, 金万勤, 陈日志, 等. 陶瓷膜连续反应器的设计与工程应用[J]. 化工学报, 2010, 61(7): 1666-1673. |
Xing W H, Jin W Q, Chen R Z, et al. Design and application of continuous ceramic membrane reactor[J]. CIESC Journal, 2010, 61(7): 1666-1673. | |
14 | 金万勤, 徐南平. 限域传质分离膜[J]. 化工学报, 2018, 69(1): 50-56. |
Jin W Q, Xu N P. Membrane separation based on mechanism of confined mass transfer[J]. CIESC Journal, 2018, 69(1): 50-56. | |
15 | 武军伟, 邢卫红, 张峰, 等. 一体式流化床膜反应器合成二甲基二氯硅烷[J]. 化工学报, 2014, 65(7): 2776-2784. |
Wu J W, Xing W H, Zhang F, et al. Synthesis of dimethyldichlorosilane by fluidized bed membrane reactor[J]. CIESC Journal, 2014, 65(7): 2776-2784. | |
16 | Viganò S M, di Filippo S, Manzoni C, et al. Membrane characteristics[M]//Hemodialysis—from Basic Research to Clinical Trials. Basel: KARGER, 2008: 162-167. |
17 | Makdisi G, Wang I W. Extra corporeal membrane oxygenation (ECMO) review of a lifesaving technology[J]. Journal of Thoracic Disease, 2015, 7(7): E166-E176. |
18 | Clark Jr L C, Lyons C. Electrode systems for continuous monitoring in cardiovascular surgery[J]. Annals of the New York Academy of Sciences, 1962, 102(1): 29-45. |
19 | Asal M, Özen Ö, Şahinler M, et al. Recent developments in enzyme, DNA and immuno-based biosensors[J]. Sensors, 2018, 18(6): E1924. |
20 | Gao J, Jeffries L, Mach K E, et al. A multiplex electrochemical biosensor for bloodstream infection diagnosis[J]. SLAS Technology, 2017, 22(4): 466-474. |
21 | Razumiene J, Gureviciene V, Sakinyte I, et al. The synergy of thermally reduced graphene oxide in amperometric urea biosensor: application for medical technologies[J]. Sensors, 2020, 20(16): 4496. |
22 | Xie Y, Chu Z Y, Jin W Q. Beyond separation: membranes towards medicine[J]. Journal of Membrane Science Letters, 2022, 2(1): 100020. |
23 | Yao X Y, Liu Y, Chu Z Y, et al. Membranes for the life sciences and their future roles in medicine[J]. Chinese Journal of Chemical Engineering, 2022, 49: 1-20. |
24 | Chu Z Y, Li L L, Liu G P, et al. A novel membrane with heterogeneously functionalized nanocrystal layers performing blood separation and sensing synchronously[J]. Chemical Communications, 2016, 52(86): 12706-12709. |
25 | Shi Y F, Han X Y, Pan S, et al. Gold nanomaterials and bone/cartilage tissue engineering: biomedical applications and molecular mechanisms[J]. Frontiers in Chemistry, 2021, 9: 724188. |
26 | Siddique S, Chow J C L. Gold nanoparticles for drug delivery and cancer therapy[J]. Applied Sciences, 2020, 10(11): 3824. |
27 | Tian Y Y, Qiang S, Wang L H. Gold nanomaterials for imaging-guided near-infrared in vivo cancer therapy[J]. Frontiers in Bioengineering and Biotechnology, 2019, 7: 398. |
28 | Jiang D F, Chu Z Y, Peng J M, et al. Screen-printed biosensor chips with Prussian blue nanocubes for the detection of physiological analytes[J]. Sensors and Actuators B: Chemical, 2016, 228: 679-687. |
29 | Long X X, Chen H Y, Huang T J, et al. Removal of Cd(Ⅱ) from micro-polluted water by magnetic core-shell Fe3O4@Prussian blue[J]. Molecules, 2021, 26(9): 2497. |
30 | Liu T, Zhao Q, Xie Y, et al. In situ fabrication of aloe-like Au-ZnO micro/nanoarrays for ultrasensitive biosensing of catechol[J]. Biosensors and Bioelectronics, 2020, 156: 112145. |
31 | Yang P Q, Pang J, Hu F H, et al. An ultrasensitive biosensing flexible chip using a novel silver@Prussian blue core-shell nanocube composite[J]. Sensors and Actuators B: Chemical, 2018, 276: 31-41. |
32 | Qu J Y, Kang S P, Du X P, et al. Synthesis, characterization and applications of a new Prussian blue type material[J]. Electroanalysis, 2013, 25(7): 1722-1726. |
33 | Holade Y, Servat K, Rousseau J, et al. Electrochemical and physicochemical characterizations of gold-based nanomaterials: correlation between surface composition and electrocatalytic activity[J]. Journal of the Electrochemical Society, 2015, 162(14): H929-H937. |
34 | Elouarzaki K, le Goff A, Holzinger M, et al. From gold porphyrins to gold nanoparticles: catalytic nanomaterials for glucose oxidation[J]. Nanoscale, 2014, 6(15): 8556-8560. |
[1] | 邵苛苛, 宋孟杰, 江正勇, 张旋, 张龙, 高润淼, 甄泽康. 水平方向上冰中受陷气泡形成和分布实验研究[J]. 化工学报, 2023, 74(S1): 161-164. |
[2] | 吴延鹏, 李晓宇, 钟乔洋. 静电纺丝纳米纤维双疏膜油性细颗粒物过滤性能实验分析[J]. 化工学报, 2023, 74(S1): 259-264. |
[3] | 刘远超, 关斌, 钟建斌, 徐一帆, 蒋旭浩, 李耑. 单层XSe2(X=Zr/Hf)的热电输运特性研究[J]. 化工学报, 2023, 74(9): 3968-3978. |
[4] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[5] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[6] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[7] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[8] | 陈佳起, 赵万玉, 姚睿充, 侯道林, 董社英. 开心果壳基碳点的合成及其对Q235碳钢的缓蚀行为研究[J]. 化工学报, 2023, 74(8): 3446-3456. |
[9] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
[10] | 张佳怡, 何佳莉, 谢江鹏, 王健, 赵鹬, 张栋强. 渗透汽化技术用于锂电池生产中N-甲基吡咯烷酮回收的研究进展[J]. 化工学报, 2023, 74(8): 3203-3215. |
[11] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
[12] | 张贲, 王松柏, 魏子亚, 郝婷婷, 马学虎, 温荣福. 超亲水多孔金属结构驱动的毛细液膜冷凝及传热强化[J]. 化工学报, 2023, 74(7): 2824-2835. |
[13] | 邢美波, 张中天, 景栋梁, 张洪发. 磁调控水基碳纳米管协同多孔材料强化相变储/释能特性[J]. 化工学报, 2023, 74(7): 3093-3102. |
[14] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[15] | 韩奎奎, 谭湘龙, 李金芝, 杨婷, 张春, 张永汾, 刘洪全, 于中伟, 顾学红. 四通道中空纤维MFI分子筛膜用于二甲苯异构体分离[J]. 化工学报, 2023, 74(6): 2468-2476. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 299
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 |
|
|||||||||||||||||||||||||||||||||||||||||||||||||