化工学报 ›› 2021, Vol. 72 ›› Issue (4): 2047-2056.DOI: 10.11949/0438-1157.20201026
收稿日期:
2020-07-27
修回日期:
2020-09-30
出版日期:
2021-04-05
发布日期:
2021-04-05
通讯作者:
宁静红
作者简介:
宁静红(1964—),女,博士,教授,基金资助:
NING Jinghong(),SUN Zhaoyang,BAO Chunxiu,ZHAO Yanfeng
Received:
2020-07-27
Revised:
2020-09-30
Online:
2021-04-05
Published:
2021-04-05
Contact:
NING Jinghong
摘要:
针对高热通量芯片的冷却散热问题,利用具有巨大升华潜热以及极低初始温度的干冰作为散热流体,通过建立干冰冷却的散热器模型,对散热器散热空间内干冰冷却降温过程的热流场进行模拟仿真,对干冰冷却的芯片降温特性进行分析,得出:干冰入口半径为6 mm,散热器针柱直径为2 mm、11×11均匀分布的散热效果最好。随着干冰流速逐渐增大,芯片温度达到稳定时间越快,流速为0.20 m/s时稳定温度为15.49℃,远低于芯片结温,0.06 m/s的流速即可达到芯片安全温度。干冰流速为0.20 m/s,在10 s时散热空间内已充满干冰,降温效果更好。功率为125 W时,干冰冷却也可将芯片中心测点(A点)温度稳定控制在49.47℃之下。此外,对比分析了P0=65 W下的水冷式冷却降温与P0=95 W下的干冰冷却降温性能,得出水冷式冷却稳定后的温度停留在74.2℃,干冰冷却稳定后的温度为15.49℃,干冰冷却降温的芯片整体温度分布更均匀,冷却效果更好。研究结果为进一步深入研究高热通量芯片干冰冷却降温系统打下基础。
中图分类号:
宁静红, 孙朝阳, 鲍春秀, 赵延峰. 高热通量芯片干冰冷却降温性能的理论分析[J]. 化工学报, 2021, 72(4): 2047-2056.
NING Jinghong, SUN Zhaoyang, BAO Chunxiu, ZHAO Yanfeng. Theoretical analysis on the cooling performance of high heat flux chip with dry ice[J]. CIESC Journal, 2021, 72(4): 2047-2056.
属性 | 干冰 | 气态二氧化碳 | 铜 | 硅 | 导热硅脂 |
---|---|---|---|---|---|
恒压热容 | 770 J/(kg·K) | cp(T) | 385 J/(kg·K) | 703 J/(kg·K) | 1200 J/(kg·K) |
密度 | 110 kg/m3 | ρ(p,T) | 8960 kg/m3 | 2203 kg/m3 | 2600 kg/m3 |
热导率 | 5 W/(m·K) | k(T) | 400 W/(m·K) | 1.38 W/(m·K) | 12 W/(m·K) |
动力黏度 | 5×10-6 Pa·s | η(T) | — | — | — |
比热率 | 1.3745 | 1.3 | — | — | — |
表1 模型所选材料的参数及特性
Table 1 Parameters and properties of the material selected by the model
属性 | 干冰 | 气态二氧化碳 | 铜 | 硅 | 导热硅脂 |
---|---|---|---|---|---|
恒压热容 | 770 J/(kg·K) | cp(T) | 385 J/(kg·K) | 703 J/(kg·K) | 1200 J/(kg·K) |
密度 | 110 kg/m3 | ρ(p,T) | 8960 kg/m3 | 2203 kg/m3 | 2600 kg/m3 |
热导率 | 5 W/(m·K) | k(T) | 400 W/(m·K) | 1.38 W/(m·K) | 12 W/(m·K) |
动力黏度 | 5×10-6 Pa·s | η(T) | — | — | — |
比热率 | 1.3745 | 1.3 | — | — | — |
参数名称 | 值 | 描述 |
---|---|---|
Tpc | -78.5℃ | 相变起始温度 |
Tdeat | 10℃ | 相变温度间隔 |
L12 | 573.6 kJ/kg | 相变潜热 |
Tus | -78.5℃ | 干冰进入初始温度 |
T0 | 20℃ | 模型初始温度 |
表2 模型相变相关参数
Table 2 Related parameters of model phase change
参数名称 | 值 | 描述 |
---|---|---|
Tpc | -78.5℃ | 相变起始温度 |
Tdeat | 10℃ | 相变温度间隔 |
L12 | 573.6 kJ/kg | 相变潜热 |
Tus | -78.5℃ | 干冰进入初始温度 |
T0 | 20℃ | 模型初始温度 |
针柱直径/mm | 针柱数量 | 间隔距离/ (mm×mm) | 测点温度/℃ |
---|---|---|---|
2 | 10×10 | 5.0×5.0 | 27.8517 |
2 | 11×11 | 4.5×4.5 | 26.4396 |
2 | 12×12 | 4.0×4.0 | 27.4226 |
2 | 13×13 | 3.8×3.8 | 31.2222 |
2 2 | 14×14 15×15 | 3.5×3.5 3.25×3.25 | 30.8857 30.3023 |
表3 不同针柱数量及间距下的芯片底面中心测点温度
Table 3 The temperature at the center of the bottom surface of the chip under different pin numbers and pin spacing distances
针柱直径/mm | 针柱数量 | 间隔距离/ (mm×mm) | 测点温度/℃ |
---|---|---|---|
2 | 10×10 | 5.0×5.0 | 27.8517 |
2 | 11×11 | 4.5×4.5 | 26.4396 |
2 | 12×12 | 4.0×4.0 | 27.4226 |
2 | 13×13 | 3.8×3.8 | 31.2222 |
2 2 | 14×14 15×15 | 3.5×3.5 3.25×3.25 | 30.8857 30.3023 |
1 | 黄贤浪. 一种高热流密度电子设备结构设计[J]. 机械工程师, 2019, (6): 120-123. |
Huang X L. Structural design of a high heat flux electronic equipment[J]. Mechanical Engineer, 2019, (6): 120-123. | |
2 | 苟哲铭, 魏震, 颜少航, 等. 微型制冷系统研究进展[J]. 制冷学报, 2020, 41(1): 1-9. |
Gou Z M, Wei Z, Yan S H, et al. Review of miniature refrigeration system[J]. Journal of Refrigeration, 2020, 41(1): 1-9. | |
3 | 秦晓琪, 韩楚文. CPU散热原理及散热方式浅析[J]. 电脑知识与技术, 2017, 13(10): 210-211. |
Qin X Q, Han C W. Analysis of CPU cooling principle and cooling method [J]. Computer Knowledge and Technology, 2017, 13(10): 210-211. | |
4 | 王文豪, 潘政宏, 蒋润花, 等. CPU散热器的优化设计及数值模拟[J]. 电子测试, 2017(15): 39, 47. |
Wang W H, Pan Z H, Jiang R H, et al. Optimize design and numerical simulation of CPU heat sink[J]. Electronic Test, 2017, (15): 39-47. | |
5 | 宋从文, 艾书义. 基于ANSYS的CPU散热器的温度场分析[J]. 农业装备与车辆工程, 2013, 51(9): 74-76. |
Song C W, Ai S Y. Analysis on temperature field of the CPU radiator based on ANSYS[J]. Agricultural Equipment & Vehicle Engineering, 2013, 51(9): 74-76. | |
6 | 康明魁, 王晓明, 李海涛, 等. 某主板的铝基均热板设计、仿真与实验研究[J]. 制冷学报, 2020, 41(2): 107-114. |
Kang M K, Wang X M, Li H T, et al. Design, simulation, and experimental study of aluminous vapor chamber based on a motherboard[J]. Journal of Refrigeration, 2020, 41(2): 107-114. | |
7 | 贾英杰, 肖飞, 罗毅飞, 等. 基于场路耦合的大功率IGBT多速率电热联合仿真方法[J]. 电工技术学报, 2020, 35(9): 1952-1961. |
Jia Y J, Xiao F, Luo Y F, et al. Multi-rate electro-thermal simulation method for high power IGBT based on field-circuit coupling[J]. Transactions of China Electrotechnical Society, 2020, 35(9): 1952-1961. | |
8 | 李慧君, 郭保仓, 杜保周, 等. 微柱群通道内饱和沸腾换热特性实验研究[J]. 制冷学报, 2018, 39(3): 44-50. |
Li H J, Guo B C, Du B Z, et al. Experimental study of saturated flow boiling heat transfer in an array of micro-pin-fins[J]. Journal of Refrigeration, 2018, 39(3): 44-50. | |
9 | 邹子文, 徐子耀, 崔云. 不同结构的CPU水冷散热器的性能分析[J]. 能源工程, 2020, (2): 85-88. |
Zou Z W, Xu Z Y, Cui Y. Comparative analysis of the performance of water coolers for CPU with different structures[J]. Energy Engineering, 2020, (2): 85-88. | |
10 | 白敏丽, 喜娜, 徐哲, 等. CPU集成热管散热器试验研究及CFD辅助设计[J]. 大连理工大学学报, 2008, 48(2): 178-184. |
Bai M L, Xi N, Xu Z, et al. Design of CPU integrated heat sink using heat pipes assisted with CFD and experimental research[J]. Journal of Dalian University of Technology, 2008, 48(2): 178-184. | |
11 | Poachaiyapoom A, Leardkun R, Mounkong J, et al. Miniature vapor compression refrigeration system for electronics cooling[J]. Case Studies in Thermal Engineering, 2019, 13: 100365. |
12 | Hu H M, Ge T S, Dai Y J, et al. Experimental study on water-cooled thermoelectric cooler for CPU under severe environment[J]. International Journal of Refrigeration, 2016, 62: 30-38. |
13 | 牛永红, 刘宗攀, 庞赟佶. CPU芯片水冷散热器的数值模拟与分析[J]. 化工进展, 2010, 29(S1): 653-655. |
Niu Y H, Liu Z P, Pang Y J. Numerical simulation and analysis of CPU chip water-cooled radiator [J]. Chemical Industry and Engineering Progress, 2010, 29(S1): 653-655. | |
14 | 王彬, 诸凯, 王雅博, 等. 翅柱式水冷CPU芯片散热器冷却与流动性能[J]. 化工进展, 2017, 36(6): 2031-2037. |
Wang B, Zhu K, Wang Y B, et al. Experimental study on cooling and flow performance of water-cooling radiator with different pin-fins structures for CPU cooling[J]. Chemical Industry and Engineering Progress, 2017, 36(6): 2031-2037. | |
15 | 崔卓, 诸凯, 王雅博, 等. 高热流密度器件水冷散热器结构性能的实验研究[J]. 化工进展, 2016, 35(5): 1338-1343. |
Cui Z, Zhu K, Wang Y B, et al. Experimental study on water-cooled radiator structure performance of high heat flux device[J]. Chemical Industry and Engineering Progress, 2016, 35(5): 1338-1343. | |
16 | 魏少华, 高峰, 王飞. 基于固气耦合的CPU散热器流场分析和数值模拟[J]. 电子设计工程, 2013, 21(18): 45-47. |
Wei S H, Gao F, Wang F. Field analysis and numerical simulation of CPU radiator flow based on the solid and gas coupling[J]. Electronic Design Engineering, 2013, 21(18): 45-47. | |
17 | 胡广涛, 金明明. 一种射流式水冷CPU散热器传热特性的数值模拟[J]. 现代工业经济和信息化, 2015, 5(16): 69-72. |
Hu G T, Jin M M. Numerical simulation of heat transfer characteristics of fluidic cooling CPU heat sink[J]. Modern Industrial Economy and Informationization, 2015, 5(16): 69-72. | |
18 | 李艳红. CPU热柱散热器的实验研究及流场和温度场的数值模拟[D]. 湘潭: 湘潭大学, 2010. |
Li Y H. Experimental testing of CPU thermal column radiator and numerical simulation of its flow field and temperature field[D]. Xiangtan: Xiangtan University, 2010. | |
19 | Li J X, Li Y Z, Li E H, et al. Experimental investigation of spray-sublimation cooling system with CO2 dry-ice particles[J]. Applied Thermal Engineering, 2020, 174: 115285. |
20 | 马力, 郭宪民, 孔进笑. 改进的CO2两相流引射制冷系统性能实验研究[J]. 低温与超导, 2020, 48(5): 47-52. |
Ma L, Guo X M, Kong J X. Experimental study on performance of improved CO2 two-phase flow ejector refrigeration system[J]. Cryogenics & Superconductivity, 2020, 48(5): 47-52. | |
21 | Siricharoenpanich A, Wiriyasart S, Srichat A, et al. Thermal management system of CPU cooling with a novel short heat pipe cooling system[J]. Case Studies in Thermal Engineering, 2019, 15: 100545. |
22 | Xie J L, Tan Y B, Duan F, et al. Study of heat transfer enhancement for structured surfaces in spray cooling[J]. Applied Thermal Engineering, 2013, 59(1/2): 464-472. |
23 | Cheng W L, Han F Y, Liu Q N, et al. Spray characteristics and spray cooling heat transfer in the non-boiling regime[J]. Energy, 2011, 36(5): 3399-3405. |
24 | Bostanci H, Rini D P, Kizito J P, et al. High heat flux spray cooling with ammonia: investigation of enhanced surfaces for CHF[J]. International Journal of Heat and Mass Transfer, 2012, 55(13/14): 3849-3856. |
25 | Lin L C, Ponnappan R. Heat transfer characteristics of spray cooling in a closed loop[J]. International Journal of Heat and Mass Transfer, 2003, 46(20): 3737-3746. |
26 | 朱丽瑶, 曹建光, 董丽宁, 等. 航天器高热流射流冷却技术研究综述[J]. 上海航天, 2016, 33(2): 106-112. |
Zhu L Y, Cao J G, Dong L N, et al. Review on jet impingement technology for spacecraft high-heat-flux removal[J]. Aerospace Shanghai, 2016, 33(2): 106-112. | |
27 | 邱晓光. RADEON 9700 PRO显卡极限液氮超频[J]. 大众硬件, 2003, (1): 123-124. |
Qiu X G. RADEON 9700 PRO graphics card extreme liquid nitrogen overclocking [J]. POP Hard, 2003, (1): 123-124. | |
28 | 常琳, 郑子川, 姜云健. 基于专利分析的电力设备干冰清洗技术[J]. 科技与创新, 2017, (10): 25-26. |
Chang L, Zheng Z C, Jiang Y J. Dry ice cleaning technology for power equipment based on patent analysis [J]. Science and Technology & Innovation, 2017, (10): 25-26. | |
29 | 吕平. 干冰微粒喷射技术综述[J]. 真空科学与技术学报, 2016, 36(8): 955-961. |
Lyu P. Latest progress in cleaning / polishing of delicate surfaces by CO2 snow jet spraying[J]. Chinese Journal of Vacuum Science and Technology, 2016, 36(8): 955-961. | |
30 | Sherman R. Carbon dioxide snow cleaning[J]. Particulate Science and Technology, 2007, 25(1): 37-57. |
[1] | 程小松, 殷勇高, 车春文. 不同工质在溶液除湿真空再生系统中的性能对比[J]. 化工学报, 2023, 74(8): 3494-3501. |
[2] | 杨辉著, 兰精灵, 杨月, 梁嘉林, 吕传文, 朱永刚. 高功率平板热管传热性能的实验研究[J]. 化工学报, 2023, 74(4): 1561-1569. |
[3] | 尹驰, 张正国, 凌子夜, 方晓明. 含石蜡@二氧化硅纳米胶囊和碳纤维的相变热界面材料及其散热性能[J]. 化工学报, 2023, 74(4): 1795-1804. |
[4] | 陈尔健, 代彦军. 使用NH3-LiNO3工质对的增压型回热吸收循环性能分析[J]. 化工学报, 2021, 72(S1): 445-452. |
[5] | 邵索拉, 张欢, 由世俊, 郑万冬. 带有蓄热型直接冷凝式加热板的空气源热泵系统性能研究[J]. 化工学报, 2020, 71(8): 3480-3489. |
[6] | 游怀亮, 韩吉田, 刘洋. 基于SOFC/MGT/ORC的微型冷热电联供系统性能分析[J]. 化工学报, 2018, 69(S2): 300-308. |
[7] | 马帅杰, 林文胜. 天然气分输站压力能利用方式经济性分析[J]. 化工学报, 2018, 69(S2): 413-419. |
[8] | 梁灵娇, 刘金平, 许雄文. 用于高热通量电子散热的平板环路重力热管[J]. 化工学报, 2018, 69(10): 4231-4238. |
[9] | 张东, 李金平, 张涵. 基于沼气的热电气联供系统全工况模型与性能分析[J]. 化工学报, 2017, 68(5): 1998-2008. |
[10] | 涂壤, 曲世琳, 马飞. 热泵和除湿板结合的固体除湿新风机组特性[J]. 化工学报, 2015, 66(12): 4796-4805. |
[11] | 吴永佳, 明廷臻, 彭柯源, 沈文庆. 高热通量下热电器件热结构耦合数值模拟[J]. 化工学报, 2014, 65(S1): 303-307. |
[12] | 张博, 王亚雄. 热电制冷液体冷却散热器的实验研究[J]. 化工学报, 2014, 65(9): 3441-3446. |
[13] | 张博, 王亚雄. 热电制冷液体冷却散热器的实验研究[J]. 化工学报, 2014, 65(9): 0-0. |
[14] | 顾承真1,闵兆升1,洪厚胜1,2. 机械蒸汽再压缩蒸发系统的性能分析[J]. 化工进展, 2014, 33(01): 30-35. |
[15] | 丁良辉, 汤吉海, 崔咪芬, 陈献, 薄翠梅, 乔旭. 甲苯氯化连串反应的RD和SRC过程分析与比较[J]. 化工学报, 2013, 64(9): 3277-3284. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||