化工学报 ›› 2023, Vol. 74 ›› Issue (8): 3494-3501.DOI: 10.11949/0438-1157.20230646
收稿日期:
2023-06-29
修回日期:
2023-08-16
出版日期:
2023-08-25
发布日期:
2023-10-18
通讯作者:
殷勇高
作者简介:
程小松(1993—),男,博士研究生,xiaosong-cheng@ seu.edu.cn
基金资助:
Xiaosong CHENG(), Yonggao YIN(
), Chunwen CHE
Received:
2023-06-29
Revised:
2023-08-16
Online:
2023-08-25
Published:
2023-10-18
Contact:
Yonggao YIN
摘要:
对一种溶液除湿真空再生系统进行了实验及模拟研究,实验对比了LiCl溶液及CaBr2∶CaCl2=1∶1(溶质的质量分数比)混合溶液的系统性能,发现两溶液的出口含湿量及COP较为接近,当驱动温度为62℃时,系统COP均为0.65左右。通过模拟研究发现,两种溶液的除湿能力十分接近,混合溶液的COP略高于LiCl溶液。驱动温度84℃时,采用混合溶液的出口含湿量为6.0 g/kg左右,系统COP为0.81左右。进口含湿量越高,系统COP将会越高,得益于混合溶液较小的比热容,其再生溶液的耗热量略低,因此其COP略高于LiCl溶液。在此类溶液除湿系统中,CaBr2∶CaCl2=1∶1混合溶液能较好地替代LiCl溶液,实现低成本,高性能。
中图分类号:
程小松, 殷勇高, 车春文. 不同工质在溶液除湿真空再生系统中的性能对比[J]. 化工学报, 2023, 74(8): 3494-3501.
Xiaosong CHENG, Yonggao YIN, Chunwen CHE. Performance comparison of different working pairs on a liquid desiccant dehumidification system with vacuum regeneration[J]. CIESC Journal, 2023, 74(8): 3494-3501.
名称 | 类型 | 准确度 | 范围 |
---|---|---|---|
温度计 | T型热电偶 | ±0.1℃ | -10~120℃ |
温湿度传感器 | Vaisala HMT120 | 温度: ±0.1℃;湿度: ±1.5% | 温度范围: -40~60℃;湿度范围:0~100% |
空气流量计 | KIMO CP300 | ±1 m3/h | 0~9999 m3/h |
电磁流量计 | KQ-LDBF-15S-T2F1-000D | ±0.5% | 0.16~2.5 m3/h |
电磁流量计 | KQ-LDBF-15S-M2F1-001D | ±0.5% | 0.318~6 m3/h |
表1 不同测量设备的规格
Table 1 Specifications for the test rig
名称 | 类型 | 准确度 | 范围 |
---|---|---|---|
温度计 | T型热电偶 | ±0.1℃ | -10~120℃ |
温湿度传感器 | Vaisala HMT120 | 温度: ±0.1℃;湿度: ±1.5% | 温度范围: -40~60℃;湿度范围:0~100% |
空气流量计 | KIMO CP300 | ±1 m3/h | 0~9999 m3/h |
电磁流量计 | KQ-LDBF-15S-T2F1-000D | ±0.5% | 0.16~2.5 m3/h |
电磁流量计 | KQ-LDBF-15S-M2F1-001D | ±0.5% | 0.318~6 m3/h |
参数 | 数值 |
---|---|
热水流量/(m3/h) | 3.9 |
冷却水流量/(m3/h) | 4.5 |
冷凝器冷却水进口温度/℃ | 27.5 |
除湿溶液流量/(m3/h) | 3.6 |
再生溶液流量/(kg/s) | 2 |
空气流量(混合溶液)/(m3/h) | 2000 |
空气流量(LiCl溶液)/(m3/h) | 2400 |
空气进口温度/℃ | 27~28 |
除湿溶液进口温度/℃ | 26~27 |
除湿再生循环流量/(kg/s) | 0.3 |
表2 实验参数
Table 2 Experimental parameters
参数 | 数值 |
---|---|
热水流量/(m3/h) | 3.9 |
冷却水流量/(m3/h) | 4.5 |
冷凝器冷却水进口温度/℃ | 27.5 |
除湿溶液流量/(m3/h) | 3.6 |
再生溶液流量/(kg/s) | 2 |
空气流量(混合溶液)/(m3/h) | 2000 |
空气流量(LiCl溶液)/(m3/h) | 2400 |
空气进口温度/℃ | 27~28 |
除湿溶液进口温度/℃ | 26~27 |
除湿再生循环流量/(kg/s) | 0.3 |
参数 | 数值 |
---|---|
热水流量/(kg/s) | 1 |
热水温度/℃ | 70 |
冷却水流量/(kg/s) | 1.5 |
冷凝器冷却水进口温度/℃ | 33 |
除湿溶液流量/(kg/s) | 0.8 |
除湿再生循环流量/(kg/s) | 0.1 |
空气流量/(kg/s) | 0.6 |
空气进口温度/℃ | 30 |
空气进口含湿量/(g/kg) | 18 |
除湿溶液进口温度/℃ | 30 |
再生溶液流量/(kg/s) | 1 |
溶液-溶液换热器效能 | 0.7 |
表3 模拟参数
Table 3 Simulation parameters
参数 | 数值 |
---|---|
热水流量/(kg/s) | 1 |
热水温度/℃ | 70 |
冷却水流量/(kg/s) | 1.5 |
冷凝器冷却水进口温度/℃ | 33 |
除湿溶液流量/(kg/s) | 0.8 |
除湿再生循环流量/(kg/s) | 0.1 |
空气流量/(kg/s) | 0.6 |
空气进口温度/℃ | 30 |
空气进口含湿量/(g/kg) | 18 |
除湿溶液进口温度/℃ | 30 |
再生溶液流量/(kg/s) | 1 |
溶液-溶液换热器效能 | 0.7 |
21 | Yon H R, Cai W J, Wang Y Y, et al. Dynamic model for a novel liquid desiccant regeneration system operating in vacuum condition[J]. Energy and Buildings, 2018, 167: 69-78. |
22 | Yon H R, Cai W J, Wang Y Y, et al. Performance investigation on a novel liquid desiccant regeneration system operating in vacuum condition[J]. Applied Energy, 2018, 211: 249-258.. |
23 | 高文忠, 时亚茹, 韩笑生, 等. 混合除湿盐溶液液滴闪蒸机理[J]. 化工学报, 2012, 63(11): 3453-3459. |
Gao W Z, Shi Y R, Han X S, et al. Droplet flash evaporation of mixed dehumidification solutions[J]. CIESC Journal, 2012, 63(11): 3453-3459. | |
24 | 韩雨松, 邹同华, 邓赛峰. 不同真空度下除湿溶液再生性能的试验研究[J]. 流体机械, 2016, 44(3): 70-75. |
Han Y S, Zou T H, Deng S F. Experimental study on performance of desiccant-solution regeneration in different vacuum degree[J]. Fluid Machinery, 2016, 44(3): 70-75. | |
25 | 解鸣, 茆春俊, 吕雯, 等. 基于热管传热的除湿溶液真空再生过程实验研究[J]. 制冷学报, 2019, 40(6): 103-110. |
Xie M, Mao C J, Lv W, et al. Experimental study of the vacuum regeneration process of a dehumidifying solution based on heat pipe heat transfer[J]. Journal of Refrigeration, 2019, 40(6): 103-110. | |
26 | 彭冬根, 程小松, 李霜玲, 等. 一种新型溶液除湿装置数学模型及性能分析[J]. 太阳能学报, 2019, 40(2): 474-479. |
Peng D G, Cheng X S, Li S L, et al. Mathematical model and performance analysis of a new liquid desiccant dehumidifier[J]. Acta Energiae Solaris Sinica, 2019, 40(2): 474-479. | |
27 | Liu X H, Jiang Y, Qu K Y. Heat and mass transfer model of cross flow liquid desiccant air dehumidifier/regenerator[J]. Energy Conversion and Management, 2007, 48(2): 546-554. |
28 | Zhang F, Yin Y G, Cao B W, et al. Performance analysis of a novel dual-evaporation-temperature combined-effect absorption chiller for temperature and humidity independent control air-conditioning[J]. Energy Conversion and Management, 2022, 273: 116417. |
29 | Che C W, Yin Y G. A statistical thermodynamic model for prediction of vapor pressure of mixed liquid desiccants near saturated solubility[J]. Energy, 2019, 175: 798-809. |
1 | Yin Y G, Zhang X S, Chen Z Q. Experimental study on dehumidifier and regenerator of liquid desiccant cooling air conditioning system[J]. Building and Environment, 2007, 42(7): 2505-2511. |
2 | 成洁, 殷勇高, 张凡. 低品位热驱动混合溶液除湿降温系统性能分析[J]. 东南大学学报(自然科学版), 2019, 49(1): 148-153. |
Cheng J, Yin Y G, Zhang F. Performance analysis of liquid desiccant cooling system using mixed solution driven by low-grade heat source[J]. Journal of Southeast University (Natural Science Edition), 2019, 49(1): 148-153. | |
3 | Liu J, Liu X H, Zhang T. Performance comparison and exergy analysis of different flow types in internally-cooled liquid desiccant dehumidifiers (ICDs)[J]. Applied Thermal Engineering, 2018, 142: 278-291. |
4 | Longo G A, Gasparella A. Experimental and theoretical analysis of heat and mass transfer in a packed column dehumidifier/regenerator with liquid desiccant[J]. International Journal of Heat and Mass Transfer, 2005, 48(25/26): 5240-5254. |
5 | Guan B W, Zhang T, Liu J, et al. Review of internally cooled liquid desiccant air dehumidification: materials, components, systems, and performances[J]. Building and Environment, 2022, 211: 108747. |
6 | Varela R J, Yamaguchi S, Giannetti N, et al. General correlations for the heat and mass transfer coefficients in an air-solution contactor of a liquid desiccant system and an experimental case application[J]. International Journal of Heat and Mass Transfer, 2018, 120: 851-860. |
7 | Liu X H, Zhang Y, Qu K Y, et al. Experimental study on mass transfer performances of cross flow dehumidifier using liquid desiccant[J]. Energy Conversion and Management, 2006, 47(15/16): 2682-2692. |
8 | 关博文, 张勤灵, 张涛, 等. 溶液除湿式空气处理机组在锂电池生产厂房中的应用[J]. 暖通空调, 2022, 52(3): 100-104, 161. |
Guan B W, Zhang Q L, Zhang T, et al. Application of liquid desiccant air handling units to lithium battery production workshops[J]. Heating Ventilating & Air Conditioning, 2022, 52(3): 100-104, 161. | |
9 | 彭冬根, 徐少华. 蒸发冷却条件下管内LiCl和CaCl2溶液降膜除湿性能对比[J]. 化工学报, 2020, 71(4): 1554-1561. |
Peng D G, Xu S H. Experimental comparison on dehumidification performance of LiCl and CaCl2 under evaporative cooling condition[J]. CIESC Journal, 2020, 71(4): 1554-1561. | |
30 | Patil K R, Chaudhari S K, Katti S S. Thermodynamic properties of aqueous solutions of lithium iodide: simplified method for predicting the enthalpies from the vapor-pressure data[J]. Applied Energy, 1991, 39(3): 189-199. |
10 | 沈子婧, 殷勇高, 张小松. 基于氯化钙溶液的混合盐溶液除湿剂物性测量[J]. 化工学报, 2016, 67(7): 3004-3009. |
Shen Z J, Yin Y G, Zhang X S. Measurement and analysis of physical properties of mixed liquid desiccants based on calcium chloride solution[J]. CIESC Journal, 2016, 67(7): 3004-3009. | |
11 | 王沐, 殷勇高, 郭枭爽, 等. 经济型多元溶液的替代方案及除湿再生性能验证[J]. 化工学报, 2018, 69(S2): 420-424. |
Wang M, Yin Y G, Guo X S, et al. Alternative scheme and dehumidification and regeneration performance validation for economic multi-component solution[J]. CIESC Journal, 2018, 69(S2): 420-424. | |
12 | Wen T, Luo Y M, Wang M, et al. Comparative study on the liquid desiccant dehumidification performance of lithium chloride and potassium formate[J]. Renewable Energy, 2021, 167: 841-852. |
13 | Longo G A, Gasparella A. Three years experimental comparative analysis of a desiccant based air conditioning system for a flower greenhouse: assessment of different desiccants[J]. Applied Thermal Engineering, 2015, 78: 584-590. |
14 | Varela R J, Giannetti N, Saito K, et al. Experimental performance of a three-fluid desiccant contactor using a novel ionic liquid[J]. Applied Thermal Engineering, 2022, 210: 118343. |
15 | Cao B W, Yin Y G, Zhang F, et al. Experimental study on heat and mass transfer characteristics between a novel ionic liquid and air under low-humidity conditions[J]. International Journal of Heat and Mass Transfer, 2022, 198: 123373. |
16 | Liu X H, Yi X Q, Jiang Y. Mass transfer performance comparison of two commonly used liquid desiccants: LiBr and LiCl aqueous solutions[J]. Energy Conversion and Management, 2011, 52(1): 180-190. |
17 | Lazzarin R M, Gasparella A, Longo G A. Chemical dehumidification by liquid desiccants: theory and experiment[J]. International Journal of Refrigeration, 1999, 22(4): 334-347. |
18 | Li X W, Zhang X S, Cao R Q, et al. Progress in selecting desiccant and dehumidifier for liquid desiccant cooling system[J]. Energy and Buildings, 2012, 49: 410-418. |
19 | 童守宝, 车春文, 殷勇高. CaBr2溶液除湿再生性能及腐蚀性实验研究[J]. 东南大学学报(自然科学版), 2022, 52(3): 425-432. |
Tong S B, Che C W, Yin Y G. Experimental study on dehumidification and regeneration performance and corrosiveness of CaBr2 solution[J]. Journal of Southeast University (Natural Science Edition), 2022, 52(3): 425-432. | |
20 | Chen X J, Riffat S, Bai H Y, et al. Recent progress in liquid desiccant dehumidification and air-conditioning: a review[J]. Energy and Built Environment, 2020, 1(1): 106-130. |
[1] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[2] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[3] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[4] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[5] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[6] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[7] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[8] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和![]() |
[9] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
[10] | 韩晨, 司徒友珉, 朱斌, 许建良, 郭晓镭, 刘海峰. 协同处理废液的多喷嘴粉煤气化炉内反应流动研究[J]. 化工学报, 2023, 74(8): 3266-3278. |
[11] | 黄可欣, 李彤, 李桉琦, 林梅. 加装旋转叶轮T型通道流场的模态分解[J]. 化工学报, 2023, 74(7): 2848-2857. |
[12] | 史方哲, 甘云华. 超薄热管启动特性和传热性能数值模拟[J]. 化工学报, 2023, 74(7): 2814-2823. |
[13] | 朱兴驰, 郭志远, 纪志永, 汪婧, 张盼盼, 刘杰, 赵颖颖, 袁俊生. 选择性电渗析镁锂分离过程模拟优化[J]. 化工学报, 2023, 74(6): 2477-2485. |
[14] | 陈巨辉, 张谦, 舒崚峰, 李丹, 徐鑫, 刘晓刚, 赵晨希, 曹希峰. 基于DEM方法的旋转流化床纳米颗粒流动特性研究[J]. 化工学报, 2023, 74(6): 2374-2381. |
[15] | 江锦波, 彭新, 许文烜, 门日秀, 刘畅, 彭旭东. 泵出型螺旋槽油气密封泄漏特性及参数影响研究[J]. 化工学报, 2023, 74(6): 2538-2554. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 403
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 178
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||