化工学报 ›› 2021, Vol. 72 ›› Issue (S1): 445-452.DOI: 10.11949/0438-1157.20201505
收稿日期:
2020-10-28
修回日期:
2021-01-15
出版日期:
2021-06-20
发布日期:
2021-06-20
通讯作者:
代彦军
作者简介:
陈尔健(1994—),男,博士研究生,基金资助:
Received:
2020-10-28
Revised:
2021-01-15
Online:
2021-06-20
Published:
2021-06-20
Contact:
DAI Yanjun
摘要:
近年来,日益增长的暖通空调系统能耗已接近50%的建筑能源消费量。吸收式循环可使用太阳能热能、工业废热等低品位能源产生制冷效果,进而降低夏季制冷负荷对高品味电能的大量需求。当前常用于吸收制冷循环的LiBr-H2O工质对虽然COP较高,但由于物性限制了其蒸发温度范围以及存在较高的结晶风险,使得系统小型风冷设计存在限制。氨水工质对具有较宽的制冷温区,但由于需要精馏以提高氨气浓度造成COP较低。NH3-LiNO3工质对无须增设精馏器,结晶温度远高于LiBr-H2O,且氨气压力较高适合在耦合压缩机循环以提升循环性能,扩宽运行温区。因此,本研究提出压缩机辅助的增压型回热吸收循环使用NH3-LiNO3工质对,并对其进行热力分析,研究压缩机的引入对循环性能的改进作用。结果显示,压缩机辅助作用下循环驱动温度下降至34℃,蒸发温度亦可降低至-34℃,且循环倍率降低了52.16%,更适于小型风冷设计。
中图分类号:
陈尔健, 代彦军. 使用NH3-LiNO3工质对的增压型回热吸收循环性能分析[J]. 化工学报, 2021, 72(S1): 445-452.
CHEN Erjian, DAI Yanjun. Performance analysis of absorption heat recovering cycle with high-pressure booster using NH3-LiNO3 as the working pair[J]. CIESC Journal, 2021, 72(S1): 445-452.
参数 | 数值 |
---|---|
发生温度(8)/℃ | 34~100 |
冷凝温度(2)/℃ | 28~44 |
吸收温度(5)/℃ | 28~44 |
蒸发温度(3)/℃ | -34~40 |
压缩机压比(PR) | 1、1.3、1.5、1.7、2 |
表1 循环工作参数范围
Table 1 Range of operating parameters
参数 | 数值 |
---|---|
发生温度(8)/℃ | 34~100 |
冷凝温度(2)/℃ | 28~44 |
吸收温度(5)/℃ | 28~44 |
蒸发温度(3)/℃ | -34~40 |
压缩机压比(PR) | 1、1.3、1.5、1.7、2 |
1 | Lu J, Zahedi A, Yang C S, et al. Building the hydrogen economy in China: drivers, resources and technologies [J]. Renewable and Sustainable Energy Reviews, 2013, 23: 543-556. |
2 | Nematchoua M K, Yvon A, Roy S E J, et al. A review on energy consumption in the residential and commercial buildings located in tropical regions of Indian Ocean: a case of Madagascar island [J]. Journal of Energy Storage, 2019, 24: 100748. |
3 | Ding Q, Cai W J, Wang C, et al. The relationships between household consumption activities and energy consumption in China — an input-output analysis from the lifestyle perspective [J]. Applied Energy, 2017, 207: 520-532. |
4 | Liu Q L, Lei Q, Xu H M, et al. China's energy revolution strategy into 2030 [J]. Resources, Conservation and Recycling, 2018, 128: 78-89. |
5 | Pérez-Lombard L, Ortiz J, Pout C. A review on buildings energy consumption information [J]. Energy and Buildings, 2008, 40(3): 394-398. |
6 | Choudhury B, Saha B B, Chatterjee P K, et al. An overview of developments in adsorption refrigeration systems towards a sustainable way of cooling [J]. Applied Energy, 2013, 104: 554-567. |
7 | Khaliq A, Kumar R, Mokheimer E M A. Investigation on a solar thermal power and ejector-absorption refrigeration system based on first and second law analyses [J]. Energy, 2018, 164: 1030-1043. |
8 | Farshi L G, Mosaffa A H, Ferreira C A I, et al. Thermodynamic analysis and comparison of combined ejector-absorption and single effect absorption refrigeration systems [J]. Applied Energy, 2014, 133: 335-346. |
9 | Abed A M, Alghoul M A, Sopian K. Performance evaluation of flash tank-absorption cooling cycle using two ejectors [J]. Applied Thermal Engineering, 2016, 101: 47-60. |
10 | Abed A M, Sopian K, Alghoul M A, et al. Experimental evaluation of single stage ejector-absorption cooling cycle under different design configurations [J]. Solar Energy, 2017, 155: 130-141. |
11 | Al-Hamed K H M, Dincer I. Investigation of a concentrated solar-geothermal integrated system with a combined ejector-absorption refrigeration cycle for a small community [J]. International Journal of Refrigeration, 2019, 106: 407-426. |
12 | Bellos E, Tzivanidis C. Parametric analysis and optimization of a cooling system with ejector-absorption chiller powered by solar parabolic trough collectors [J]. Energy Conversion and Management, 2018, 168: 329-342. |
13 | Jelinek M, Levy A, Borde I. The performance of a triple pressure level absorption cycle (TPLAC) with working fluids based on the absorbent DMEU and the refrigerants R22, R32, R124, R125, R134a and R152a [J]. Applied Thermal Engineering, 2008, 28(11/12): 1551-1555. |
14 | Levy A, Jelinek M, Borde I, et al. Performance of an advanced absorption cycle with R125 and different absorbents [J]. Energy, 2004, 29(12/13/14/15): 2501-2515. |
15 | Majdi H S. Performance evaluation of combined ejector LiBr/H2O absorption cooling cycle [J]. Case Studies in Thermal Engineering, 2016, 7: 25-35. |
16 | Salimpour M R, Ahmadzadeh A, Al-Sammarraie A T. Comparative investigation on the exergoeconomic analysis of solar-driven ejector refrigeration systems [J]. International Journal of Refrigeration, 2019, 99: 80-93. |
17 | Shi Y Q, Li F, Hong D L, et al. Experimental study of a new ejector-absorption refrigeration cycle driven by multi-heat sources [J]. Applied Thermal Engineering, 2018, 133: 604-612. |
18 | Sioud D, Bourouis M, Bellagi A. Investigation of an ejector powered double-effect absorption/recompression refrigeration cycle [J]. International Journal of Refrigeration, 2019, 99: 453-468. |
19 | Sioud D, Garma R, Bellagi A. Thermodynamic analysis of a solar combined ejector absorption cooling system [J]. Journal of Engineering, 2018, 2018: 1-12. |
20 | Sözen A, Ali Akçayol M. Modelling (using artificial neural-networks) the performance parameters of a solar-driven ejector-absorption cycle [J]. Applied Energy, 2004, 79(3): 309-325. |
21 | Sözen A, Özalp M. Performance improvement of absorption refrigeration system using triple-pressure-level [J]. Applied Thermal Engineering, 2003, 23(13): 1577-1593. |
22 | Sözen A, Yücesu H S. Performance improvement of absorption heat transformer [J]. Renewable Energy, 2007, 32(2): 267-284. |
23 | Tashtoush B M, Al-Nimr M A, Khasawneh M A. A comprehensive review of ejector design, performance, and applications [J]. Applied Energy, 2019, 240: 138-172. |
24 | Ventas R, Vereda C, Lecuona A, et al. Experimental study of a thermochemical compressor for an absorption/compression hybrid cycle [J]. Applied Energy, 2012, 97: 297-304. |
25 | Vereda C, Ventas R, Lecuona A, et al. Study of an ejector-absorption refrigeration cycle with an adaptable ejector nozzle for different working conditions [J]. Applied Energy, 2012, 97: 305-312. |
26 | Wang Y Z, Chen T, Liang Y B, et al. A novel cooling and power cycle based on the absorption power cycle and booster-assisted ejector refrigeration cycle driven by a low-grade heat source: energy, exergy and exergoeconomic analysis [J]. Energy Conversion and Management, 2020, 204: 112321. |
27 | Yan X N, Shi Y Q, Wang L, et al. Experimental evaluation of a 1.x-effect ejector-absorption refrigeration system [J]. Applied Thermal Engineering, 2019, 157: 113738. |
28 | Xie G Z, Wu Q P, Fa X M, et al. A novel lithium bromide absorption chiller with enhanced absorption pressure [J]. Applied Thermal Engineering, 2012, 38: 1-6. |
29 | Ventas R, Lecuona A, Zacarías A, et al. Ammonia-lithium nitrate absorption chiller with an integrated low-pressure compression booster cycle for low driving temperatures [J]. Applied Thermal Engineering, 2010, 30(11/12): 1351-1359. |
30 | Wang J, Wang B L, Wu W, et al. Performance analysis of an absorption-compression hybrid refrigeration system recovering condensation heat for generation [J]. Applied Thermal Engineering, 2016, 108: 54-65. |
31 | Yin H X, Qu M, Archer D H. Model based experimental performance analysis of a microscale LiBr-H2O steam-driven double-effect absorption chiller [J]. Applied Thermal Engineering, 2010, 30(13): 1741-1750. |
32 | Srikhirin P, Aphornratana S, Chungpaibulpatana S. A review of absorption refrigeration technologies [J]. Renewable and Sustainable Energy Reviews, 2001, 5(4): 343-372. |
33 | 靳华栋, 孙淑凤, 王立. 吸收式制冷用氨-硝酸锂工质对及循环系统的研究[J]. 低温与超导, 2007, 35(1): 65-68. |
Jin H D, Sun S F, Wang L. The study of ammonia-lithium nitrate mixtures and absorption refrigeration cycle [J]. Cryogenics and Superconductivity, 2007, 35(1): 65-68. | |
34 | Farshi L G, Asadi S. Ammonia lithium nitrate and ammonia sodium thiocyanate double effect absorption refrigeration systems: Thermodynamic analysis [J]. Applied Thermal Engineering, 2018, 138: 374-385. |
[1] | 黄琮琪, 吴一梅, 陈建业, 邵双全. 碱性电解水制氢装置热管理系统仿真研究[J]. 化工学报, 2023, 74(S1): 320-328. |
[2] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及分析[J]. 化工学报, 2023, 74(S1): 53-63. |
[3] | 张化福, 童莉葛, 张振涛, 杨俊玲, 王立, 张俊浩. 机械蒸汽压缩蒸发技术研究现状与发展趋势[J]. 化工学报, 2023, 74(S1): 8-24. |
[4] | 米泽豪, 花儿. 基于DFT和COSMO-RS理论研究多元胺型离子液体吸收SO2气体[J]. 化工学报, 2023, 74(9): 3681-3696. |
[5] | 程小松, 殷勇高, 车春文. 不同工质在溶液除湿真空再生系统中的性能对比[J]. 化工学报, 2023, 74(8): 3494-3501. |
[6] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[7] | 胡兴枝, 张皓焱, 庄境坤, 范雨晴, 张开银, 向军. 嵌有超小CeO2纳米粒子的碳纳米纤维的制备及其吸波性能[J]. 化工学报, 2023, 74(8): 3584-3596. |
[8] | 徐野, 黄文君, 米俊芃, 申川川, 金建祥. 多源信息融合的离心式压缩机喘振诊断方法[J]. 化工学报, 2023, 74(7): 2979-2987. |
[9] | 邵远哲, 赵忠盖, 刘飞. 基于共同趋势模型的非平稳过程质量相关故障检测方法[J]. 化工学报, 2023, 74(6): 2522-2537. |
[10] | 江锦波, 彭新, 许文烜, 门日秀, 刘畅, 彭旭东. 泵出型螺旋槽油气密封泄漏特性及参数影响研究[J]. 化工学报, 2023, 74(6): 2538-2554. |
[11] | 李正涛, 袁志杰, 贺高红, 姜晓滨. 疏水界面上的NaCl液滴蒸发过程内环流调控机制研究[J]. 化工学报, 2023, 74(5): 1904-1913. |
[12] | 李木金, 胡松, 施德磐, 赵鹏, 高瑞, 李进龙. 环氧丁烷尾气溶剂吸收及精制工艺[J]. 化工学报, 2023, 74(4): 1607-1618. |
[13] | 杨灿, 孙雪琦, 尚明华, 张建, 张香平, 曾少娟. 相变离子液体体系吸收分离CO2的研究现状及展望[J]. 化工学报, 2023, 74(4): 1419-1432. |
[14] | 许文烜, 江锦波, 彭新, 门日秀, 刘畅, 彭旭东. 宽速域三种典型型槽油气密封泄漏与成膜特性对比研究[J]. 化工学报, 2023, 74(4): 1660-1679. |
[15] | 何万媛, 陈一宇, 朱春英, 付涛涛, 高习群, 马友光. 阵列凸起微通道内气液两相传质特性研究[J]. 化工学报, 2023, 74(2): 690-697. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||