化工学报 ›› 2021, Vol. 72 ›› Issue (11): 5790-5799.DOI: 10.11949/0438-1157.20210817
杜加磊1,2(),翟持1,2,朱远蹠1,2,谢德龙1,2,梅毅1,2()
收稿日期:
2021-06-17
修回日期:
2021-09-07
出版日期:
2021-11-05
发布日期:
2021-11-12
通讯作者:
梅毅
作者简介:
杜加磊(1995—),男,硕士研究生,基金资助:
Jialei DU1,2(),Chi ZHAI1,2,Yuanzhi ZHU1,2,Delong XIE1,2,Yi MEI1,2()
Received:
2021-06-17
Revised:
2021-09-07
Online:
2021-11-05
Published:
2021-11-12
Contact:
Yi MEI
摘要:
工业节能是碳减排的首要措施,热法磷酸生产过程每燃烧1 t黄磷释放出的反应热高达26289 MJ,占黄磷总能耗的25%。本文应用Aspen Plus软件,基于有效能的分析方法,对热法磷酸生产过程不同的热能回收方式进行研究。结果表明:以现有热法磷酸热能回收工艺为基础,燃磷塔副产蒸汽压力由1.0 MPa提升至2.5 MPa,热量回收效率由46.29%提升至62.42%,系统的效率由26.22%提升至34.95%;进一步通过用水化塔循环酸加热进入燃磷塔的加压水,系统的热回收效率提升至87.08%,效率提升至46.59%,实现了热法磷酸热能的全回收利用。空气过剩系数的灵敏度分析表明,在保证黄磷充分氧化反应的前提下,适当降低空气过剩系数有利于热回收效率和效率的提升。
中图分类号:
杜加磊,翟持,朱远蹠,谢德龙,梅毅. 基于分析的热法磷酸全热能回收技术模拟研究[J]. 化工学报, 2021, 72(11): 5790-5799.
Jialei DU,Chi ZHAI,Yuanzhi ZHU,Delong XIE,Yi MEI. Simulation study on heat energy recovery technology of furnace-process phosphoric acid process[J]. CIESC Journal, 2021, 72(11): 5790-5799.
操作单元 | Aspen Plus 模型 | 描述 |
---|---|---|
黄磷的雾化 | Mcompr+Mixer | 模拟黄磷的雾化过程 |
特种燃磷塔 | Rstoic+Heater | 模拟黄磷的氧化燃烧和副产蒸汽的过程 |
P4O10的水化 | Rstoic+Sep | 模拟磷酸的生产过程 |
酸雾捕集 | Mixer+Value+Sep | 模拟酸雾的补集过程 |
水化热的移除 | Heater | 移走水化过程中放出的热量 |
表1 各操作单元的模型选择及用途
Table 1 Representative unit operation models used in simulation
操作单元 | Aspen Plus 模型 | 描述 |
---|---|---|
黄磷的雾化 | Mcompr+Mixer | 模拟黄磷的雾化过程 |
特种燃磷塔 | Rstoic+Heater | 模拟黄磷的氧化燃烧和副产蒸汽的过程 |
P4O10的水化 | Rstoic+Sep | 模拟磷酸的生产过程 |
酸雾捕集 | Mixer+Value+Sep | 模拟酸雾的补集过程 |
水化热的移除 | Heater | 移走水化过程中放出的热量 |
参数 | 数值 |
---|---|
压缩空气出口压力/MPa | 0.4 |
封头出口温度/℃ | 105 |
特种燃磷塔操作压力/Pa | -2940 |
特种燃磷塔出口气体温度/℃ | 700~750 |
汽包进口温度/℃ | 104 |
饱和蒸汽压力/MPa | 1 |
水化塔循环酸倍率 | 50 |
循环酸温度/℃ | 75 |
尾气出口温度/℃ | 50 |
表2 热法磷酸的操作参数
Table 2 Operating parameters of furnace-process phosphoric acid
参数 | 数值 |
---|---|
压缩空气出口压力/MPa | 0.4 |
封头出口温度/℃ | 105 |
特种燃磷塔操作压力/Pa | -2940 |
特种燃磷塔出口气体温度/℃ | 700~750 |
汽包进口温度/℃ | 104 |
饱和蒸汽压力/MPa | 1 |
水化塔循环酸倍率 | 50 |
循环酸温度/℃ | 75 |
尾气出口温度/℃ | 50 |
项目 | 上封头冷却水出口温度/℃ | 燃磷塔气体出口温度/℃ | 产品磷酸浓度/% | 尾气磷酸含量/(mg·m-3) |
---|---|---|---|---|
生产数据 | 100℃左右 | 700~750 | 85.00 | <30 |
模拟数据 | 104℃ | 730 | 84.87 | 5.45 |
表3 主要工艺模拟数据与实际生产数据比较
Table 3 Comparison between on site date and simulation value
项目 | 上封头冷却水出口温度/℃ | 燃磷塔气体出口温度/℃ | 产品磷酸浓度/% | 尾气磷酸含量/(mg·m-3) |
---|---|---|---|---|
生产数据 | 100℃左右 | 700~750 | 85.00 | <30 |
模拟数据 | 104℃ | 730 | 84.87 | 5.45 |
系统 | 项目 | 流股 | 值/kW | 局部损失/kW | 占比/% |
---|---|---|---|---|---|
黄磷反应子系统 | 压缩机 | 输入:202,W电能 | 276.33 | 97.98 | 0.71 |
输出:203 | 178.35 | ||||
磷喷枪 | 输入:203,102 | 18723.80 | 289.65 | 2.10 | |
输出:121 | 18434.15 | ||||
黄磷燃烧过程损失 | 输入:121,204 | 18440.54 | 2863.32 | 20.71 | |
输出:122 | 15577.23 | ||||
黄磷反应热回收子系统 | 给水泵 | 输入:309,W电能 | 106.13 | 2.63 | 0.02 |
输出:310 | 103.50 | ||||
特种燃磷塔传热损失(含换热器) | 输入:301,122 | 15581.30 | 5567.63 | 40.27 | |
输出:312,126 | 10013.66 | ||||
五氧化二磷水化子系统 | 水化阶段损失(含换热器) | 输入:126,401 | 6956.61 | 5003.72 | 36.19 |
输出:414,405 | 2932.32 | ||||
合计 | 13824.93 | 100.00 |
表4 副产1.0 MPa蒸汽热法磷酸各子系统衡算
Table 4 Exergy caculation in 1.0 MPa by-product steam furnace-process phosphoric acid system
系统 | 项目 | 流股 | 值/kW | 局部损失/kW | 占比/% |
---|---|---|---|---|---|
黄磷反应子系统 | 压缩机 | 输入:202,W电能 | 276.33 | 97.98 | 0.71 |
输出:203 | 178.35 | ||||
磷喷枪 | 输入:203,102 | 18723.80 | 289.65 | 2.10 | |
输出:121 | 18434.15 | ||||
黄磷燃烧过程损失 | 输入:121,204 | 18440.54 | 2863.32 | 20.71 | |
输出:122 | 15577.23 | ||||
黄磷反应热回收子系统 | 给水泵 | 输入:309,W电能 | 106.13 | 2.63 | 0.02 |
输出:310 | 103.50 | ||||
特种燃磷塔传热损失(含换热器) | 输入:301,122 | 15581.30 | 5567.63 | 40.27 | |
输出:312,126 | 10013.66 | ||||
五氧化二磷水化子系统 | 水化阶段损失(含换热器) | 输入:126,401 | 6956.61 | 5003.72 | 36.19 |
输出:414,405 | 2932.32 | ||||
合计 | 13824.93 | 100.00 |
系统 | 项目 | 流股 | 值/kW | 局部损失/kW | 占比/% |
---|---|---|---|---|---|
黄磷反应子系统 | 压缩机 | 输入:202,W电能 | 276.33 | 97.98 | 0.80 |
输出:203 | 178.35 | ||||
磷喷枪 | 输入:203,102 | 18723.80 | 289.65 | 2.38 | |
输出:121 | 18434.15 | ||||
黄磷燃烧过程损失 | 输入:121,204 | 18440.23 | 2880.61 | 23.63 | |
输出:122 | 15559.61 | ||||
黄磷反应热回收子系统 | 给水泵 | 输入:309,W电能 | 108.33 | 2.92 | 0.023 |
输出:310 | 105.41 | ||||
特种燃磷塔传热损失 | 输入:301,122 | 15573.61 | 4854.49 | 39.82 | |
输出:312,126 | 10719.12 | ||||
五氧化二磷水化子系统 | 水化阶段损失(含换热器) | 输入:126,401 | 6017.28 | 4066.44 | 33.35 |
输出:414,405 | 1950.84 | ||||
合计 | 12192.09 | 100.00 |
表5 副产2.5 MPa热法磷酸各子系统衡算
Table 5 Exergy caculation in 2.5 MPa by-product steam furnace-process phosphoric acid system
系统 | 项目 | 流股 | 值/kW | 局部损失/kW | 占比/% |
---|---|---|---|---|---|
黄磷反应子系统 | 压缩机 | 输入:202,W电能 | 276.33 | 97.98 | 0.80 |
输出:203 | 178.35 | ||||
磷喷枪 | 输入:203,102 | 18723.80 | 289.65 | 2.38 | |
输出:121 | 18434.15 | ||||
黄磷燃烧过程损失 | 输入:121,204 | 18440.23 | 2880.61 | 23.63 | |
输出:122 | 15559.61 | ||||
黄磷反应热回收子系统 | 给水泵 | 输入:309,W电能 | 108.33 | 2.92 | 0.023 |
输出:310 | 105.41 | ||||
特种燃磷塔传热损失 | 输入:301,122 | 15573.61 | 4854.49 | 39.82 | |
输出:312,126 | 10719.12 | ||||
五氧化二磷水化子系统 | 水化阶段损失(含换热器) | 输入:126,401 | 6017.28 | 4066.44 | 33.35 |
输出:414,405 | 1950.84 | ||||
合计 | 12192.09 | 100.00 |
系统 | 项目 | 流股 | 值/kW | 局部损失/kW | 占比/% |
---|---|---|---|---|---|
黄磷反应子系统 | 压缩机 | 输入:202,W电能 | 276.31 | 97.96 | 0.98 |
输出:203 | 178.35 | ||||
磷喷枪 | 输入:203,102 | 18723.78 | 289.62 | 2.91 | |
输出:121 | 18434.15 | ||||
黄磷燃烧过程损失 | 输入:121,204 | 18440.23 | 2880.62 | 28.93 | |
输出:122 | 15559.61 | ||||
黄磷反应热回收子系统 | 给水泵 | 输入:309,W电能 | 113.13 | 4.30 | 0.043 |
输出:310 | 108.50 | ||||
特种燃磷塔传热损失 | 输入:301,122 | 15559.61 | 2948.45 | 29.61 | |
输出:312,126 | 12633.23 | ||||
五氧化二磷水化子系统 | 水化阶段损失 | 输入:126,401 | 5922.58 | 3735.54 | 37.52 |
输出:414,405 | 2077.15 | ||||
合计 | 9956.54 | 100.00 |
表6 热法磷酸全热能回收各子系统衡算
Table 6 Exergy caculation in total heat recovery system
系统 | 项目 | 流股 | 值/kW | 局部损失/kW | 占比/% |
---|---|---|---|---|---|
黄磷反应子系统 | 压缩机 | 输入:202,W电能 | 276.31 | 97.96 | 0.98 |
输出:203 | 178.35 | ||||
磷喷枪 | 输入:203,102 | 18723.78 | 289.62 | 2.91 | |
输出:121 | 18434.15 | ||||
黄磷燃烧过程损失 | 输入:121,204 | 18440.23 | 2880.62 | 28.93 | |
输出:122 | 15559.61 | ||||
黄磷反应热回收子系统 | 给水泵 | 输入:309,W电能 | 113.13 | 4.30 | 0.043 |
输出:310 | 108.50 | ||||
特种燃磷塔传热损失 | 输入:301,122 | 15559.61 | 2948.45 | 29.61 | |
输出:312,126 | 12633.23 | ||||
五氧化二磷水化子系统 | 水化阶段损失 | 输入:126,401 | 5922.58 | 3735.54 | 37.52 |
输出:414,405 | 2077.15 | ||||
合计 | 9956.54 | 100.00 |
20 | Gong C S. Technology and Application of Advanced Phosphorus Chemical Engineering[M]. Beijing: Chemical Industry Press, 2013: 568. |
21 | 朱清武. 热法磷酸设计中应考虑的几个问题[J]. 湖北化工, 1998, 15(6): 42-43. |
Zhu Q W. Study on the design of phosphoric acid by thermal process [J]. Hubei Chemical, 1998, 15(6): 42-43. | |
22 | 张冠忠, 刘绍杰. 热法磷酸燃烧塔余热回收装置内表面的高温防腐蚀[J]. 材料保护, 2002, 35 (12): 50-52. |
Zhang G Z, Liu S J. High temperature corrosion resistance of plasma-sprayed ceramic coating in phosphorous combustion tower[J]. Materials Protection, 2002, 35(12): 50-52. | |
23 | 王政伟, 阚绪恒, 宋耀祖. 特种燃磷塔自然水循环安全校核计算及优化[J]. 化学工程, 2011, 39(3): 91-94. |
Wang Z W, Kan X H, Song Y Z. Safety check calculation and optimization of special phosphorus furnace natural water cycle[J]. Chemical Engineering (China), 2011, 39(3): 91-94. | |
24 | 王政伟, 李园园, 雷斌, 等. 热法磷酸特种燃磷塔热平衡及热利用效率分析计算[J]. 无机盐工业, 2017, 49(4): 71-78. |
Wang Z W, Li Y Y, Lei B, et al. Analysis and calculation of heat balance and heat utilization efficiency of special phosphoric acid furnace[J]. Inorganic Chemicals Industry, 2017, 49(4): 71-75, 78. | |
25 | 文先太, 梁彩华, 刘成兴, 等. 基于空气能量回收的热源塔溶液再生系统节能性分析[J]. 化工学报, 2011, 62(11): 3242-3247. |
Wen X T, Liang C H, Liu C X, et al. Energy-saving analysis of solution regeneration in heat-source tower based on recovery of air energy[J]. CIESC Journal, 2011, 62(11): 3242-3247. | |
26 | Bejan A. Entropy generation minimization, exergy analysis, and the constructal law[J]. Arabian Journal for Science and Engineering, 2013, 38(2): 329-340. |
27 | 朱明善.能量系统的分析[M]. 北京: 清华大学出版社, 1988: 221. |
1 | 胡山鹰, 陈定江, 金涌, 等. 化学工业绿色发展战略研究: 基于化肥和煤化工行业的分析[J]. 化工学报, 2014, 65(7): 2704-2709. |
Hu S Y, Chen D J, Jin Y, et al. Green development strategies for chemical industry in China: based on analysis of fertilizer industry and coal chemical industry[J]. CIESC Journal, 2014, 65(7): 2704-2709. | |
27 | Zhu M S. Exergy Analysis of Energy Systems[M]. Beijing: Tsinghua University Press, 1988: 221. |
28 | 李应林, 谭来仔, 张小松. 基于多种状态方程模型的冷凝法油气回收对比[J]. 化工学报, 2014, 65(3): 785-791. |
Li Y L, Tan L Z, Zhang X S. Simulation of oil-vapor condensing recovery process based on several state equation models[J]. CIESC Journal, 2014, 65(3): 785-791. | |
29 | Huhti A L, Gartaganis P A. The composition of the strong phosphoric acids[J]. Canadian Journal of Chemistry, 1956, 34(6): 785-797. |
30 | Jameson R F. Composition of the ‘strong’ phosphoric acids[J]. Journal of the Chemical Society, 1959, 1: 752-759. |
2 | 张雅欣, 罗荟霖, 王灿. 碳中和行动的国际趋势分析[J]. 气候变化研究进展, 2021, 17(1): 88-97. |
Zhang Y X, Luo H L, Wang C. Progress and trends of global carbon neutrality pledges[J]. Climate Change Research. 2021, 17(1): 88-97. | |
3 | 林彭年. 热法磷酸生产工艺特征[J]. 化肥设计, 1990, 28(4): 15-17. |
Lin P N. Characteristics of thermal phosphoric acid production process[J]. Chemical Fertilizer Design, 1990, 28(4): 15-17. | |
4 | 梅毅, 方晓峰. 湿法磷酸净化与热法磷酸竞争力分析[J]. 云南化工, 2007, 34(5): 18-22. |
Mei Y, Fang X F. Analysis on competitiveness of wet and heat methods phosphoric acid [J]. Yunnan Chemical Technology, 2007, 34(5): 18-22. | |
5 | 薛生晖. 回转窑法磷酸制备新工艺的研究现状和前景[J]. 矿冶工程, 1995, 15(4): 48-51. |
Xue S H. Research status and prospect of a new technology for the preparation of phosphoric acid from rotary kiln[J]. Mining and Metallurgical Engineering, 1995, 15(4): 48-51. | |
6 | 欧阳贻德, 唐正姣, 王存文, 等. 电子级磷酸的制备与研究进展[J]. 现代化工, 2009, 29(3): 22-26. |
Ouyang Y D, Tang Z J, Wang C W, et al. Progress in preparation and research of electronic grade phosphoric acid[J]. Modern Chemical Industry, 2009, 29(3): 22-26. | |
7 | 钟本和, 李军, 郭孝东, 等. 湿法磷酸净化技术研究现状及发展方向[J]. 无机盐工业, 2008, 40(2): 9-12. |
Zhong B H, Li J, Guo X D, et al. Current research status and development direction of purification technology of wet-process phosphoric acid[J]. Inorganic Chemicals Industry, 2008, 40(2): 9-12. | |
8 | 王辛龙, 许德华, 钟艳君, 等. 中国磷化工行业60年发展历程及未来发展趋势[J]. 无机盐工业, 2020, 52(10): 9-17. |
Wang X L, Xu D H, Zhong Y J, et al. Future trend and development course of phosphorus chemical industry for sixty years in China[J]. Inorganic Chemicals Industry, 2020, 52(10): 9-17. | |
9 | 马航, 冯霄. 基于湿、热法磷加工体系共生耦合的磷资源产业可持续性发展研究[J]. 无机盐工业, 2018, 50(11): 1-6. |
Ma H, Feng X. Study on sustainable development of phosphorus industry based on symbiotic coupling of wet and thermal phosphorus processing systems[J]. Inorganic Chemicals Industry, 2018, 50(11): 1-6. | |
10 | 宋耀祖, 梅毅, 张冠忠, 等. 黄磷燃烧热能回收与利用装置及其热法磷酸生产系统: 01143443.0[P]. 2002-06-26. |
Song Y Z, Mei Y. Zhang G Z, et al. Yellow phosphorus combustion heat energy recovery and utilization device and thermal phosphoric acid production system: 01143443.0[P]. 2002-06-26. | |
11 | 樊蕾, 梅毅, 杨亚斌. 高效利用反应热副产工业蒸汽热法磷酸生产装置工艺设计[J]. 无机盐工业, 2015, 47(6): 50-52. |
Fan L, Mei Y, Yang Y B. Process design of thermal process phosphoric acid plant with industrial steam by high efficient utilization of reaction heat[J]. Inorganic Chemicals Industry, 2015, 47(6): 50-52. | |
12 | Irving R J, McKerrell H. Standard heat of formation of aqueous orthophosphoric acid[J]. Transactions of the Faraday Society, 1967, 63: 2582. |
13 | 昝成, 史琳, 宋耀祖. 热法磷酸生产过程推动力和节能改造的分析[J]. 工程热物理学报2005, 26(S1): 37-40. |
Zan C, Shi L, Song Y Z. Process driving force and energy analysis in phosphorous acid production[J]. Journal of Engineering Thermophysics, 2005, 26(S1): 37-40. | |
14 | 吴宏涛, 高兴成, 幸华德. 一种多聚磷酸生产系统: 201420317868.X[P]. 2014-12-03. |
Wu H T, Gao X C, Xing H D. Polyphosphoric acid production system: 201420317868.X[P]. 2014-12-03. | |
15 | 姚卫国, 郑瑞朋, 胡凯瑞, 等. Aspen Plus模拟软件在化工中的应用[J]. 浙江化工, 2019, 50(8): 28-32. |
Yao W G, Zheng R P, Hu K R, et al. Application of Aspen Plus simulation software in chemical industry[J]. Zhejiang Chemical Industry, 2019, 50(8): 28-32, 54. | |
16 | 王超, 陈冠益, 兰维娟, 等. 生物质快速热解制油试验及流程模拟[J]. 化工学报, 2014, 65(2): 679-683. |
Wang C, Chen G Y, Lan W J, et al. Experimental research and process simulation on biomass fast pyrolysis for production of bio-oil[J]. CIESC Journal, 2014, 65(2): 679-683. | |
17 | Gopan A, Kumfer B M, Phillips J, et al. Process design and performance analysis of a staged, pressurized oxy-combustion (SPOC) power plant for carbon capture[J]. Applied Energy, 2014, 125: 179-188. |
18 | 高晓新, 王岚, 王龙耀, 等. 化工设计过程中的有效能分析[J]. 化工设计通讯, 2008, 34(2): 48-51, 64. |
Gao X X, Wang L, Wang L Y, et al. Analysis of available energy in chemical process design[J]. Chemical Engineering Design Communications, 2008, 34(2): 48-51, 64. | |
19 | 姚寿广, 杭建伟, 冯国增, 等. 25000 t LNG燃料动力化学品船能量利用系统的设计及优化分析[J]. 化工学报, 2018, 69(S2): 330-340. |
Yao S G, Hang J W, Feng G Z, et al. Simulation and optimization of energy utilization system of 25000 tons of LNG powered chemical tanker[J]. CIESC Journal, 2018, 69(S2): 330-340. | |
20 | 贡长生 现代磷化工技术和应用[M]. 北京: 化学工业出版社, 2013: 568. |
[1] | 高润淼, 宋孟杰, 高恩元, 张龙, 张旋, 邵苛苛, 甄泽康, 江正勇. 冷链装备制冷剂相关温室气体减排研究进展[J]. 化工学报, 2023, 74(S1): 1-7. |
[2] | 吴延鹏, 刘乾隆, 田东民, 陈凤君. 相变材料与热管耦合的电子器件热管理研究进展[J]. 化工学报, 2023, 74(S1): 25-31. |
[3] | 文兆伦, 李沛睿, 张忠林, 杜晓, 侯起旺, 刘叶刚, 郝晓刚, 官国清. 基于自热再生的隔壁塔深冷空分工艺设计及优化[J]. 化工学报, 2023, 74(7): 2988-2998. |
[4] | 朱轶林, 张新敬, 徐玉杰, 丁捷, 郭欢, 陈海生. 基于遗传算法-综合计算法的生物质热解气化优化分析[J]. 化工学报, 2021, 72(9): 4910-4920. |
[5] | 魏彬, 周鑫, 王耀伟, 郭振莲, 陈小博, 刘熠斌, 杨朝合. 基于改进NSGA-Ⅱ算法的FCC分离系统多目标优化[J]. 化工学报, 2021, 72(5): 2735-2744. |
[6] | 陆至彬, 谢星, 鲁思达, 何畅, 张冰剑, 陈清林. 基于代理模型的含盐废水多级纳滤系统的过程优化设计[J]. 化工学报, 2021, 72(3): 1400-1408. |
[7] | 倪辉, 杨自力, 钟珂, 陶睿杨, 谷雨倩. 内热型超声雾化溶液再生系统最优内热量的研究[J]. 化工学报, 2020, 71(3): 1035-1044. |
[8] | 孙诗瑞, 杨傲, 石涛, 申威峰. 特殊精馏热耦合强化技术研究进展[J]. 化工学报, 2020, 71(10): 4575-4589. |
[9] | 杨路, 刘硕士, 罗小艳, 杨思宇, 钱宇. MTO烯烃分离过程的多目标操作优化[J]. 化工学报, 2020, 71(10): 4720-4732. |
[10] | 王超前, 王文龙, 李哲, 孙静, 宋占龙, 赵希强, 毛岩鹏. 基于微波诱导定向加热的污泥新型热解方法能耗分析[J]. 化工学报, 2019, 70(S1): 168-176. |
[11] | 张宇轩, 翟晓强. 感温变色建筑涂料的制备及光谱反射性能实验研究[J]. 化工学报, 2019, 70(9): 3537-3544. |
[12] | 陈东良, 张忠林, 杨景轩, 马旭莉, 李鹏, 郝晓刚, 官国清. 基于自热再生的化学吸收法CO2捕集工艺模拟及节能分析[J]. 化工学报, 2019, 70(8): 2938-2945. |
[13] | 金靓婕, 白鹏, 郭翔海. 带有侧线采出回流的部分透热精馏的节能优化[J]. 化工学报, 2019, 70(5): 1804-1814. |
[14] | 张亮, 史忠科. 相变储能技术在汽车节能中的应用进展[J]. 化工学报, 2018, 69(S2): 17-25. |
[15] | 张亮, 史忠科. 被动式汽车相变材料储能器的实验分析[J]. 化工学报, 2018, 69(S1): 176-181. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||