化工学报 ›› 2020, Vol. 71 ›› Issue (3): 1035-1044.DOI: 10.11949/0438-1157.20190697
收稿日期:
2019-06-20
修回日期:
2019-10-21
出版日期:
2020-03-05
发布日期:
2020-03-05
通讯作者:
杨自力
作者简介:
倪辉(1995—),男,硕士研究生,基金资助:
Hui NI(),Zili YANG(),Ke ZHONG,Ruiyang TAO,Yuqian GU
Received:
2019-06-20
Revised:
2019-10-21
Online:
2020-03-05
Published:
2020-03-05
Contact:
Zili YANG
摘要:
基于质量守恒、能量守恒定律,建立了内热型超声雾化溶液再生系统(IH-UARS)的再生性能预测模型并进行了充分的实验验证,通过研究不同内热量下IH-UARS的再生性能及其变化规律,寻求系统所需的最佳内热量并明确其可能的影响因素。结果表明:IH-UARS系统存在最优的内热量范围,使其再生系统性能最佳;所需最优内热量随着再生溶液流量增大呈显著的对数增长,但受空气流量的影响较弱;在该研究中的标准工况下,IH-UARS所需最优内热量约为275~350 W。此外研究发现:内热量的增长有益于促进初始浓度较高的溶液进一步浓缩再生,如当IH-UARS中内热量增至800 W时,其初始浓度为36%的溶液比24%的溶液浓度增量指标改善幅度高37%。研究所得结果可对提高溶液再生性能及经济性提供积极参考。
中图分类号:
倪辉, 杨自力, 钟珂, 陶睿杨, 谷雨倩. 内热型超声雾化溶液再生系统最优内热量的研究[J]. 化工学报, 2020, 71(3): 1035-1044.
Hui NI, Zili YANG, Ke ZHONG, Ruiyang TAO, Yuqian GU. Study on optimal heating power for internally-heated ultrasonic atomization liquid desiccant regeneration system[J]. CIESC Journal, 2020, 71(3): 1035-1044.
参数 | 额定工况 | 变化范围 |
---|---|---|
进口溶液流量Gl,i/(kg·h-1) | 45 | 13.5~69.5 |
进口溶液温度tl,i/℃ | 60 | 35~65 |
进口溶液浓度ni/% | 26 | 24~32 |
进口空气流量Ga,i/(kg·h-1) | 92.5 | 68~115.5 |
进口空气温度ta,i/℃ | 32 | 26~36 |
进口空气含湿量di/(g·(kg 干空气) -1) | 18 | 10~22 |
液气比Gl,i/Ga,i | 0.49 | 0.15~0.75 |
表1 IH-UARS验证实验运行工况
Table 1 Operation conditions for experimental verification study of IH-UARS
参数 | 额定工况 | 变化范围 |
---|---|---|
进口溶液流量Gl,i/(kg·h-1) | 45 | 13.5~69.5 |
进口溶液温度tl,i/℃ | 60 | 35~65 |
进口溶液浓度ni/% | 26 | 24~32 |
进口空气流量Ga,i/(kg·h-1) | 92.5 | 68~115.5 |
进口空气温度ta,i/℃ | 32 | 26~36 |
进口空气含湿量di/(g·(kg 干空气) -1) | 18 | 10~22 |
液气比Gl,i/Ga,i | 0.49 | 0.15~0.75 |
参数 | 额定工况 | 变化范围 |
---|---|---|
进口溶液温度tl,i/℃ | 60 | 35~65 |
进口溶液浓度ω/% | 26 | 22~36 |
进口空气流量Ga,i/(kg·h-1) | 90 | 11.25~180 |
进口空气温度ta,i/℃ | 32 | 22~40 |
进口空气含湿量di/(g·(kg 干空气)-1) | 18 | 10~28 |
液气比Gl,i/Ga,i | 0.5 | 0.25~4 |
表2 IH-UARS模型运行工况
Table 2 Operation conditions for simulation of IH-UARS
参数 | 额定工况 | 变化范围 |
---|---|---|
进口溶液温度tl,i/℃ | 60 | 35~65 |
进口溶液浓度ω/% | 26 | 22~36 |
进口空气流量Ga,i/(kg·h-1) | 90 | 11.25~180 |
进口空气温度ta,i/℃ | 32 | 22~40 |
进口空气含湿量di/(g·(kg 干空气)-1) | 18 | 10~28 |
液气比Gl,i/Ga,i | 0.5 | 0.25~4 |
1 | 刘晓华, 张涛, 江亿. 采用吸湿剂处理湿空气的流程优化分析[J]. 暖通空调, 2011, 41(3): 77-87. |
Liu X H, Zhang T, Jiang Y. Optimization of heat and mass transfer processes between desiccant and moist air[J]. Journal of HV&AC, 2011, 41(3): 77-87. | |
2 | Ahmed H A, Ge G M, Carey J S. Performance analysis of a membrane liquid desiccant air-conditioning system[J]. Energy and Buildings, 2013, 62: 559-569. |
3 | 刘晓华, 李震, 张涛. 溶液除湿[M]. 北京: 中国建筑工业出版社, 2014: 23-89. |
Liu X H, Li Z, Zhang T. Liquid Desiccant Dehumidification[M]. Beijing: China Architecture & Building Press, 2014: 23-89. | |
4 | 殷勇高, 潘雄伟, 陈瑶, 等. 顺流型溶液与空气热质交换性能[J]. 化工学报, 2012, 63: 26-31. |
Yin Y G, Pan X W, Chen Y, et al. Heat and mass transfer performance between liquid desiccant and air with parallel flow[J]. CIESC Journal, 2012, 63: 26-31. | |
5 | 彭冬根, 程小松, 李霜玲, 等. 一种新型溶液除湿装置数学模型及性能分析[J]. 太阳能学报, 2019, 40(2): 474-479. |
Peng D G, Cheng X S, Li S L, et al.Mathematical model and performance analysis of a new liquid desiccant dehumidifer[J]. Acta Energiae Solaris Sinica, 2019, 40(2): 474-479. | |
6 | Zhang T, Liu X H, Jiang J J, et al. Experimental analysis of an internally-cooled liquid desiccant dehumidifier[J]. Building and Environment, 2013, 63: 1-10. |
7 | Lun W, Li K N, Liu B, et al. Experimental analysis of a novel internally-cooled dehumidifier with self-cooled liquid desiccant[J]. Building and Environment, 2018, 141: 117-126. |
8 | 常晓敏, 刘晓华, 江亿. 内冷型溶液除湿器的热质交换分析及流型比较研究[J]. 太阳能学报, 2009, 30(2): 170-176. |
Chang X M, Liu X H, Jiang Y. Research on the heat and mass transfer performance and flow-pattern comparison of the internally-cooled liquid desiccant dehumidifers[J]. Acta Energiae Solaris Sinica, 2009, 30(2): 170-176. | |
9 | 张凡, 殷勇高. 一种低位热驱动除湿冷却空调系统的热性能分析[J]. 化工学报, 2016, 67: 275-283. |
Zhang F, Yin Y G. Thermal performance analysis of liquid desiccant evaporative cooling air-condetioning system driven by low-grade heat[J]. CIESC Journal, 2016, 67: 275-283. | |
10 | 高文忠, 柳建华, 章学来. 太阳能叉流溶液除湿空调除湿性能实验分析[J]. 太阳能学报, 2012, 33(9): 1547-1552. |
Gao W Z, Liu J H, Zhang X L. Experimental analysis of dehumidifier in the solar-driven cross-flow liquid desiccant air conditioning[J]. Acta Energiae Solaris Sinica, 2012, 33(9): 1547-1552. | |
11 | 彭冬根, 罗丹婷, 程小松. 热回收型太阳能分级溶液集热/再生系统模型及环境适用性分析[J]. 化工学报, 2017, 68(8): 3242-3249. |
Peng D G, Luo D T, Cheng X S. Modeling and environmental applicability of solar solution grading collector/regenerator system with heat recovery[J]. CIESC Journal, 2017, 68(8): 3242-3249. | |
12 | 程清, 张小松. 一种双级光电光热电渗析再生系统性能研究[J]. 太阳能学报, 2015, 36(8): 1890-1894. |
Cheng Q, Zhang X S. Performance analysis of double stage PV/T electrodialysis regeneration system[J]. Acta Energiae Solaris Sinica, 2015, 36(8): 1890-1894. | |
13 | 殷勇高, 潘雄伟, 陈瑶, 等. 热空气用于溶液再生实验研究与能效分析[J].工程热物理学报, 2013, 34(4): 596-600. |
Yin Y G, Pan X W, Chen Y, et al. Experimental study and energy efficiency analysis of liquid desiccant regeneration using hot air[J]. Journal of Engineering Thermophysics, 2013, 34(4): 596-600. | |
14 | Liu X H, Jiang Y, Chang X M, et al. Experimental investigation of the heat and mass transfer between air and liquid desiccant in a cross-flow regenerator[J]. Renewable Energy, 2007, 32(10): 1623-1636. |
15 | Liu X H, Jiang Y, Yi X Q. Effect of regeneration mode on the performance of liquid desiccant packed bed regenerator[J]. Renewable Energy, 2009, 34(1): 209-216. |
16 | 戴智超. 不同填料溶液除湿/再生器及热质传递性能研究比较[D]. 南京: 东南大学, 2015. |
Dai Z C. Study on different type of fillers liquid dehumidifer/regenerator and their comparison about heat and mass transfer performance[D]. Nanjing: Southeast University, 2015. | |
17 | 殷勇高, 郑宝军, 高龙飞,等. 一种新的Z型填料及其溶液再生性能[J]. 化工学报, 2014, 65: 280-285. |
Yin Y G, Zheng B J, Gao L F, et al. A novel Z-type packing used for desiccant regenerator[J]. CIESC Journal, 2014, 65: 280-285. | |
18 | 钱俊飞, 殷勇高, 潘雄伟, 等. 平板降膜溶液除湿再生过程实验研究及模型验证[J]. 化工学报, 2014, 65(6): 2070-2077. |
Qian J F, Yin Y G, Pan X W, et al. Experimental investigation and model validation for liquid desiccant dehumidification and regeneration in falling-film plate[J]. CIESC Journal, 2014, 65(6): 2070-2077. | |
19 | 姚晔, 连之伟, 刘世清. 超声波强化再生除湿的除湿空调装置: 200510110441.8[P]. 2005-11-17. |
Yao Y, Lian Z W, Liu S Q. Ultrasound-atomizing regeneration/ dehumidification for liquid desiccant air conditioning system: 200510110441.8[P]. 2005-11-17. | |
20 | Wang L, Lian Z W. Improvement of conventional liquid desiccant dehumidification technology[J]. Journal of Southeast University, 2010, 26(2): 212-216. |
21 | Yao Y, Zhang W J, He B X. Investigation on the kinetic models for the regeneration of silica gel by hot air combined with power ultrasonic[J]. Energy Conversion and Management, 2011, 52(11): 3319-3326. |
22 | Yao Y. Research and application of ultrasound in HVAC field: a review[J]. Renewable and Sustainable Energy Reviews, 2016, 58: 52-68. |
23 | 王俐, 连之伟, 刘蔚巍. 结合超声雾化技术的液体除湿系统分析[J]. 中南大学学报(自然科学版), 2011, 42(1): 240-246. |
Wang L, Lian Z W, Liu W W. Analysis of liquid-desiccant dehumidifying system combined with ultrasound atomization technology[J]. Journal of Central South University (Science and Technology), 2011, 42(1): 240-246. | |
24 | Yang Z L, Zhang K S, Hwang Y, et al. Performance investigation on the ultrasonic atomization liquid desiccant regeneration system[J]. Applied Energy, 2016, 171: 12-25. |
25 | 殷勇高, 李士强, 张小松. 绝热型和内热型再生过程热性能对比[J]. 化工学报, 2010, 61: 157-163. |
Yin Y G, Li S Q, Zhang X S. Comparative study on dynamic performance of internally heated and adiabatic regenerators [J]. CIESC Journal, 2010, 61: 157-163. | |
26 | Yin Y G, Zhang X S. Comparative study on internally heated and adiabatic regenerators in liquid desiccant air conditioning system[J]. Building and Environment, 2010, 45(8): 1799-1807. |
27 | Yin Y G, Zhang X S, Peng D G, et al. Model validation and case study on internally cooled/heated dehumidifier/regenerator of liquid desiccant systems[J]. International Journal of Thermal Sciences, 2009, 48: 1664-1671. |
28 | Liu J, Zhang T, Liu X H, et al. Experimental analysis of an internally-cooled/heated liquid desiccant dehumidifier/regenerator made of thermally conductive plastic[J]. Energy and Buildings, 2015, 99: 75-86. |
29 | 王琴, 吴薇, 刘松松. 内热型与绝热型溶液再生器再生过程性能[J]. 化工学报, 2016, 67: 186-194. |
Wang Q, Wu W, Liu S S. Performance of regeneration processes of internally heated and adiabatic regenerators[J]. CIESC Journal, 2016, 67: 186-194. | |
30 | Conde M R. Properties of aqueous solutions of lithium and calcium chlorides: formulations for use in air conditioning equipment design[J]. International Journal of Thermal Sciences, 2004, 43(4): 367-382. |
31 | Wen T, Lu L, Yang H, et al. Investigation on the regeneration and corrosion characteristics of an anodized aluminum plate regenerator[J]. Energies, 2018, 11(5): 1209-1215. |
[1] | 常明慧, 王林, 苑佳佳, 曹艺飞. 盐溶液蓄能型热泵循环特性研究[J]. 化工学报, 2023, 74(S1): 329-337. |
[2] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及分析[J]. 化工学报, 2023, 74(S1): 53-63. |
[3] | 车睿敏, 郑文秋, 王小宇, 李鑫, 许凤. 基于离子液体的纤维素均相加工研究进展[J]. 化工学报, 2023, 74(9): 3615-3627. |
[4] | 程小松, 殷勇高, 车春文. 不同工质在溶液除湿真空再生系统中的性能对比[J]. 化工学报, 2023, 74(8): 3494-3501. |
[5] | 文兆伦, 李沛睿, 张忠林, 杜晓, 侯起旺, 刘叶刚, 郝晓刚, 官国清. 基于自热再生的隔壁塔深冷空分工艺设计及优化[J]. 化工学报, 2023, 74(7): 2988-2998. |
[6] | 卫雪岩, 钱勇. 微米级铁粉燃料中低温氧化反应特性及其动力学研究[J]. 化工学报, 2023, 74(6): 2624-2638. |
[7] | 陈科, 杜理, 曾英, 任思颖, 于旭东. 四元体系LiCl+MgCl2+CaCl2+H2O 323.2 K相平衡研究及计算[J]. 化工学报, 2023, 74(5): 1896-1903. |
[8] | 刘尚豪, 贾胜坤, 罗祎青, 袁希钢. 基于梯度提升决策树的三组元精馏流程结构最优化[J]. 化工学报, 2023, 74(5): 2075-2087. |
[9] | 潘煜, 王子航, 王佳韵, 王如竹, 张华. 基于可得然-氯化锂复合吸附剂的除湿换热器热湿性能研究[J]. 化工学报, 2023, 74(3): 1352-1359. |
[10] | 陈瑞哲, 程磊磊, 顾菁, 袁浩然, 陈勇. 纤维增强树脂复合材料化学回收技术研究进展[J]. 化工学报, 2023, 74(3): 981-994. |
[11] | 周璇, 李孟亚, 孙杰, 岑振凯, 吕强三, 周立山, 王海涛, 韩丹丹, 龚俊波. 添加剂对氨基酸晶体生长的影响[J]. 化工学报, 2023, 74(2): 500-510. |
[12] | 黄宽, 马永德, 蔡镇平, 曹彦宁, 江莉龙. 油脂催化加氢转化制备第二代生物柴油研究进展[J]. 化工学报, 2023, 74(1): 380-396. |
[13] | 鲁文静, 李先锋. 液流电池多孔离子传导膜研究进展[J]. 化工学报, 2023, 74(1): 192-204. |
[14] | 李彬, 宋文明, 杨坤龙, 姜爽, 张天永. 水系有机液流电池活性材料的分子工程研究进展[J]. 化工学报, 2022, 73(7): 2806-2818. |
[15] | 陈永安, 周安宁, 李云龙, 石智伟, 贺新福, 焦卫红. 磁性MgFe2O4及其核壳催化剂制备与煤热解性能研究[J]. 化工学报, 2022, 73(7): 3026-3037. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||