化工学报 ›› 2020, Vol. 71 ›› Issue (10): 4575-4589.DOI: 10.11949/0438-1157.20200757
收稿日期:
2020-06-16
修回日期:
2020-09-02
出版日期:
2020-10-05
发布日期:
2020-10-05
通讯作者:
申威峰
作者简介:
孙诗瑞(1993—),女,博士研究生,基金资助:
Shirui SUN(),Ao YANG,Tao SHI,Weifeng SHEN()
Received:
2020-06-16
Revised:
2020-09-02
Online:
2020-10-05
Published:
2020-10-05
Contact:
Weifeng SHEN
摘要:
在石油、医药、化工等行业生产和分离过程中,常伴随着共沸或沸点相近混合物的产生,其高效节能分离是工业清洁生产和可持续发展的前提。作为一种分离共沸或近沸等难分离混合物的重要手段,特殊精馏引起了广泛关注。然而,特殊精馏对能源的消耗量非常大,开发低成本、性能可靠的特殊精馏强化技术对实现经济和能源的可持续发展具有重要意义。基于对特殊精馏塔内外传质传热规律的研究,本文从强化原理和工艺改进技术两方面,重点介绍了热耦精馏、隔壁塔、侧线精馏、有机朗肯循环、热泵精馏、差压热耦合等内外热耦合强化技术在特殊精馏节能增效等方面的研究进展,并展望了其未来发展的挑战和机遇,以期为特殊精馏在热耦合强化方面的理论研究与应用提供参考。
中图分类号:
孙诗瑞, 杨傲, 石涛, 申威峰. 特殊精馏热耦合强化技术研究进展[J]. 化工学报, 2020, 71(10): 4575-4589.
Shirui SUN, Ao YANG, Tao SHI, Weifeng SHEN. Research advances in thermally coupled intensification technology for special distillation[J]. CIESC Journal, 2020, 71(10): 4575-4589.
1 | 黄旭, 罗祎青, 袁希钢. 带共沸的乙醇/乙酸乙酯/2-丁酮三元物系变压精馏分离过程及其参数优化 [J]. 化工学报, 2018, 69(5): 2089-2099. |
Huang X, Luo Y Q, Yuan X G. Separation of C2H5OH/C4H8O2-3/C4H8O-3 ternary mixture with azeotropes by pressure swing distillation and its parameter optimization[J]. CIESC Journal, 2018, 69(5): 2089-2099. | |
2 | Liang S, Cao Y, Liu X, et al. Insight into pressure-swing distillation from azeotropic phenomenon to dynamic control [J]. Chemical Engineering Research and Design, 2017, 117: 318-335. |
3 | Sun S, Lü L, Yang A, et al. Extractive distillation: advances in conceptual design, solvent selection, and separation strategies [J]. Chinese Journal of Chemical Engineering, 2019, 27(6): 1247-1256. |
4 | Hu Y, Li F, Wei S, et al. Design and optimization of the efficient extractive distillation process for separating the binary azeotropic mixture methanol-acetone based on the quantum chemistry and conceptual design [J]. Separation and Purification Technology, 2020, 242: 116829. |
5 | Yang A, Zou H, Chien I L, et al. Optimal design and effective control of triple-column extractive distillation for separating ethyl acetate/ethanol/water with multiazeotrope [J]. Industrial & Engineering Chemistry Research, 2019, 58(17): 7265-7283. |
6 | Shen W F, Benyounes H, Song J. A review of ternary azeotropic mixtures advanced separation strategies [J]. Theoretical Foundations of Chemical Engineering, 2016, 50(1): 28-40. |
7 | Yang A, Shen W, Wei S, et al. Design and control of pressure-swing distillation for separating ternary systems with three binary minimum azeotropes [J]. AIChE Journal, 2019, 65(4): 1281-1293. |
8 | Yang A, Lv L, Shen W, et al. Optimal design and effective control of the tert-amyl methyl ether production process using an integrated reactive dividing wall and pressure swing columns [J]. Industrial & Engineering Chemistry Research, 2017, 56(49): 14565-14581. |
9 | Kiss A A, Jobson M, Gao X. Reactive distillation: stepping up to the next level of process intensification [J]. Industrial & Engineering Chemistry Research, 2019, 58(15): 5909-5918. |
10 | 孙宏伟, 陈建峰. 我国化工过程强化技术理论与应用研究进展 [J]. 化工进展, 2011, 30(1): 1-15. |
Sun H W, Chen J F. Advances in fundamental study and application of chemical process intensification technology in China [J]. Chemical Industry and Engineering Progress, 2011, 30(1): 1-15. | |
11 | 任海伦, 安登超, 朱桃月, 等 精馏技术研究进展与工业应用 [J]. 化工进展, 2016, 35(6): 1606-1626. |
Ren H L, An D C, Zhu T Y, et al. Distillation technology research progress and industrial application [J]. Chemical Industry and Engineering Progress, 2016, 35(6): 1606-1626. | |
12 | Shen W, Benyounes H, Gerbaud V. Extractive distillation: recent advances in operation strategies [J]. Reviews in Chemical Engineering, 2015, 31(1): 13-26. |
13 | 张志炳, 田洪舟, 张锋, 等. 多相反应体系的微界面强化简述 [J]. 化工学报, 2018, 69(1): 44-49. |
Zhang Z B, Tian H Z, Zhang F, et al. Overview of microinterface intensification in multiphase reaction systems [J]. CIESC Journal, 2018, 69(1): 44-49. | |
14 | Kiss A A. Distillation technology—still young and full of breakthrough opportunities [J]. Journal of Chemical Technology & Biotechnology, 2014, 89(4): 479-498. |
15 | Shen W, Dong L, Wei S, et al. Systematic design of an extractive distillation for maximum-boiling azeotropes with heavy entrainers [J]. AIChE Journal, 2015, 61(11): 3898-3910. |
16 | 高鑫, 赵悦, 李洪, 等. 反应精馏过程耦合强化技术基础与应用研究述评 [J]. 化工学报, 2018, 69(1): 218-238. |
Gao X, Zhao Y, Li H, et al. Review of basic and application investigation of reactive distillation technology for process intensification [J]. CIESC Journal, 2018, 69(1): 218-238. | |
17 | Han J, Lei Z, Dong Y, et al. Process intensification on the separation of benzene and thiophene by extractive distillation [J]. AIChE Journal, 2015, 61(12): 4470-4480. |
18 | Le Q-K, Halvorsen I J, Pajalic O, et al. Dividing wall columns for heterogeneous azeotropic distillation [J]. Chemical Engineering Research and Design, 2015, 99: 111-119. |
19 | Yang A, Sun S, Shi T, et al. Energy-efficient extractive pressure-swing distillation for separating binary minimum azeotropic mixture dimethyl carbonate and ethanol [J]. Separation and Purification Technology, 2019, 229: 115817. |
20 | Shi T, Yang A, Jin S, et al. Comparative optimal design and control of two alternative approaches for separating heterogeneous mixtures isopropyl alcohol-isopropyl acetate-water with four azeotropes [J]. Separation and Purification Technology, 2019, 225: 1-17. |
21 | Caballero J A, Grossmann I E. Thermodynamically equivalent configurations for thermally coupled distillation [J]. AIChE Journal, 2003, 49(11): 2864-2884. |
22 | Flores O A, Cárdenas J C, Hernández S, et al. Thermodynamic analysis of thermally coupled distillation sequences [J]. Industrial & Engineering Chemistry Research, 2003, 42(23): 5940-5945. |
23 | 孙宗伟. 热耦合精馏的适应性及其热力学效率 [D]. 大连: 大连理工大学, 2008. |
Sun Z W. Adaptability and thermodynamic efficiency of thermally coupled distillation [D]. Dalian: Dalian University of Technology, 2008. | |
24 | 余爱平. 完全热耦合精馏塔及其节能效果的模拟研究 [D]. 天津: 天津大学, 2010. |
Yu A P. Simulation study on complete thermally coupled distillation column and its energy saving effect [D]. Tianjin: Tianjin University, 2010. | |
25 | 史志刚. 分隔塔型热耦合精馏技术研究 [D] . 大连: 大连理工大学, 2009. |
Shi Z G. Thermally coupled distillation of divided wall column research [D] . Dalian: Dalian University of Technology, 2009. | |
26 | Nguyen N, Demirel Y. Using thermally coupled reactive distillation columns in biodiesel production [J]. Energy, 2011, 36(8): 4838-4847. |
27 | Wang S J, Wong D S H, Yu S W. Design and control of transesterification reactive distillation with thermal coupling [J]. Computers & Chemical Engineering, 2008, 32(12): 3030-3037. |
28 | Lee H Y, Chen C Y, Chen J L, et al. Design and control of diphenyl carbonate reactive distillation process with thermally coupled and heat-integrated stages configuration [J]. Computers & Chemical Engineering, 2018, 121: 130-147. |
29 | van Duc Long N, Lee M. Optimal retrofit design of extractive distillation to energy efficient thermally coupled distillation scheme [J]. AIChE Journal, 2013, 59(4): 1175-1182. |
30 | Wang S J, Yu C C, Huang H P. Plant-wide design and control of DMC synthesis process via reactive distillation and thermally coupled extractive distillation [J]. Computers & Chemical Engineering, 2010, 34(3): 361-373. |
31 | Zhao Y, Ma K, Bai W, et al. Energy-saving thermally coupled ternary extractive distillation process by combining with mixed entrainer for separating ternary mixture containing bioethanol [J]. Energy, 2018, 148: 296-308. |
32 | Timoshenko A V, Anokhina E A, Morgunov A V, et al. Application of the partially thermally coupled distillation flowsheets for the extractive distillation of ternary azeotropic mixtures [J]. Chemical Engineering Research and Design, 2015, 104: 139-155. |
33 | Luyben W L. Control comparison of conventional and thermally coupled ternary extractive distillation processes [J]. Chemical Engineering Research and Design, 2016, 106: 253-262. |
34 | Yang A, Su Y, Chien I L, et al. Investigation of an energy-saving double-thermally coupled extractive distillation for separating ternary system benzene/toluene/cyclohexane [J]. Energy, 2019, 186: 115756. |
35 | Su Y, Jin S, Zhang X, et al. Stakeholder-oriented multi-objective process optimization based on an improved genetic algorithm [J]. Computers & Chemical Engineering, 2020, 132: 106618. |
36 | Ling H, Qiu J, Hua T, et al. Remixing analysis of four-product dividing-wall columns [J]. Chemical Engineering & Technology, 2018, 41(7): 1359-1367. |
37 | 吴宁. 隔离壁精馏塔的双温差控制 [D]. 北京: 北京化工大学, 2013. |
Wu N. Application of double temperature difference control scheme(DTDC) for the dlviding-wall distillation columns [D]. Beijing: Beijing University of Chemical Technology, 2013. | |
38 | Kiss A A, Rewagad R R. Energy efficient control of a BTX dividing-wall column [J]. Computers & Chemical Engineering, 2011, 35(12): 2896-2904. |
39 | Asprion N, Kaibel G. Dividing wall columns: fundamentals and recent advances [J]. Chemical Engineering and Processing- Process Intensification, 2010, 49(2): 139-146. |
40 | Premkumar R, Rangaiah G P. Retrofitting conventional column systems to dividing-wall columns [J]. Chemical Engineering Research and Design, 2009, 87(1): 47-60. |
41 | Long H, Clark J, Benyounes H, et al. Optimal design and economic evaluation of dividing-wall columns [J]. Chemical Engineering & Technology, 2016, 39(6): 1077-1086. |
42 | Bravo-Bravo C, Segovia-Hernández J G, Gutiérrez-Antonio C, et al. Extractive dividing wall column: design and optimization [J]. Industrial & Engineering Chemistry Research, 2010, 49(8): 3672-3688. |
43 | Ö Yildirim, Kiss A A, Kenig E Y. Dividing wall columns in chemical process industry: a review on current activities [J]. Separation and Purification Technology, 2011, 80(3): 403-417. |
44 | Sánchez-Ramírez E, Quiroz-Ramírez J J, Hernández S, et al. Optimal hybrid separations for intensified downstream processing of biobutanol [J]. Separation and Purification Technology, 2017, 185: 149-159. |
45 | Kiss A A, Ignat R M. Innovative single step bioethanol dehydration in an extractive dividing-wall column [J]. Separation and Purification Technology, 2012, 98: 290-297. |
46 | Tututi-Avila S, Jiménez-Gutiérrez A, Hahn J. Control analysis of an extractive dividing-wall column used for ethanol dehydration [J]. Chemical Engineering and Processing-Process Intensification, 2014, 82: 88-100. |
47 | Yang A, Wei R, Sun S, et al. Energy-saving optimal design and effective control of heat integration-extractive dividing wall column for separating heterogeneous mixture methanol/toluene/water with multiazeotropes [J]. Industrial & Engineering Chemistry Research, 2018, 57(23): 8036-8056. |
48 | 陈梦琪, 于娜, 刘育良, 等. 反应精馏隔壁塔生产乙酸正丁酯的优化与控制 [J]. 化工学报, 2016, 67(12): 5066-5081. |
Chen M Q, Yu N, Liu Y L, et al. Optimization and control of reactive dividing wall column for production of n-butylacetate [J]. CIESC Journal, 2016, 67(12): 5066-5081. | |
49 | 凌笑媚, 郑伟跃, 王晓达, 等. 隔壁反应精馏技术进展 [J]. 化工进展, 2017, 36(8): 2776-2786. |
Ling X M, Zheng W Y, Wang X D, et al. Advances in technology of reactive dividing wall column [J]. Chemical Industry and Engineering Progress, 2017, 36(8): 2776-2786. | |
50 | 孙兰义, 王汝军, 张月明, 等. 反应精馏隔壁塔应用于酯转换过程的研究 [J]. 化学反应工程与工艺, 2010, 26(5): 418-423. |
Sun L Y, Wang R J, Zhang Y M, et al. Study on application of reactive distillation partition tower in ester conversion process [J]. Chemieal Reaetion Engineering and Technology, 2010, 26(5): 418-423. | |
51 | Kiss A A, Suszwalak D J P C. Innovative dimethyl ether synthesis in a reactive dividing-wall column [J]. Computers & Chemical Engineering, 2012, 38: 74-81. |
52 | Ehlers C, Egger T, Fieg G. Experimental operation of a reactive dividing wall column and comparison with simulation results [J]. AIChE Journal, 2017, 63(3): 1036-1050. |
53 | Egger T, Fieg G. Dynamic process behavior and model validation of reactive dividing wall columns [J]. Chemical Engineering Science, 2018, 179: 284-295. |
54 | Qian X, Jia S, Luo Y, et al. Control of reactive dividing wall column for selective hydrogenation and separation of C3 stream [J]. Chinese Journal of Chemical Engineering, 2016, 24(9): 1213-1228. |
55 | 顾克, 陈海胜, 苑杨, 等. 一种新型双隔壁反应精馏塔及其性能 [J]. 现代化工, 2019, 39(11): 202-206. |
Gu K, Chen H S, Yuan Y, et al. A novel double dividing-wall reactive distillation column and its behaviors [J]. Modern Chemical Industry, 2019, 39(11): 202-206. | |
56 | Wu Y C, Lee H-Y, Huang H-P, et al. Energy-saving dividing-wall column design and control for heterogeneous azeotropic distillation systems [J]. Industrial & Engineering Chemistry Research, 2014, 53(4): 1537-1552. |
57 | Yu H, Ye Q, Xu H, et al. Design and control of dividing-wall column for tert-butanol dehydration system via heterogeneous azeotropic distillation [J]. Industrial & Engineering Chemistry Research, 2015, 54(13): 3384-3397. |
58 | 刘立新, 陈梦琪, 刘育良, 等. 共沸精馏隔壁塔与萃取精馏隔壁塔的控制研究 [J]. 化工进展, 2017, 36(2): 756-765. |
Liu L X, Chen M Q, Liu Y L, et al. Control of azeotropic dividing wall column and extractive dividing wall column [J]. Chemical Industry and Engineering Progress, 2017, 36(2): 756-765. | |
59 | Gutiérrez-Antonio C, Jiménez-Gutiérrez A. Design of side-stream azeotropic distillation columns [J]. Chemical Engineering Research and Design, 2007, 85(10): 1384-1389. |
60 | Cui C, Zhang X, Sun J. Design and optimization of energy-efficient liquid-only side-stream distillation configurations using a stochastic algorithm [J]. Chemical Engineering Research and Design, 2019, 145: 48-52. |
61 | Wang Y, Ma K, Yu M, et al. An improvement scheme for pressure-swing distillation with and without heat integration through an intermediate connection to achieve energy savings [J]. Computers & Chemical Engineering, 2018, 119: 439-449. |
62 | Chen Y, Liu C, Geng Z. Design and control of fully heat-integrated pressure swing distillation with a side withdrawal for separating the methanol/methyl acetate/acetaldehyde ternary mixture [J]. Chemical Engineering and Processing - Process Intensification, 2018, 123: 233-248. |
63 | Chen H, Huang K, Liu W, et al. Enhancing mass and energy integration by external recycle in reactive distillation columns [J]. AIChE Journal, 2013, 59(6): 2015-2032. |
64 | Huang K, Chen H, Zhang L, et al. Effective arrangement of an external recycle in reactive distillation columns [J]. Industrial & Engineering Chemistry Research, 2014, 53(5): 1986-1998. |
65 | Gao X, Li X, Li H. Hydrolysis of methyl acetate via catalytic distillation: simulation and design of new technological process [J]. Chemical Engineering and Processing-Process Intensification, 2010, 49(12): 1267-1276. |
66 | Tututi-Avila S, Medina-Herrera N, Hahn J, et al. Design of an energy-efficient side-stream extractive distillation system [J]. Computers & Chemical Engineering, 2017, 102: 17-25. |
67 | Shi T, Chun W, Yang A, et al. Optimization and control of energy saving side-stream extractive distillation with heat integration for separating ethyl acetate-ethanol azeotrope [J]. Chemical Engineering Science, 2020, 215: 115373. |
68 | Wang C, Guang C, Cui Y, et al. Compared novel thermally coupled extractive distillation sequences for separating multi-azeotropic mixture of acetonitrile/benzene/methanol [J]. Chemical Engineering Research and Design, 2018, 136: 513-528. |
69 | Yang A, Chun W, Sun S, et al. Dynamic study in enhancing the controllability of an energy-efficient double side-stream ternary extractive distillation of acetonitrile/methanol/benzene with three azeotropes [J]. Separation and Purification Technology, 2020, 242: 116830. |
70 | Cui Y, Zhang Z, Shi X, et al. Triple-column side-stream extractive distillation optimization via simulated annealing for the benzene/isopropanol/water separation [J]. Separation and Purification Technology, 2020, 236: 116303. |
71 | Díez E, Langston P, Ovejero G, et al. Economic feasibility of heat pumps in distillation to reduce energy use [J]. Applied Thermal Engineering, 2009, 29(5/6): 1216-1223. |
72 | Kiss A A, Flores L S J, Infante F C A. Towards energy efficient distillation technologies—making the right choice [J]. Energy, 2012, 47(1): 531-542. |
73 | Zhang Q, Yang S, Shi P, et al. Economically and thermodynamically efficient heat pump-assisted side-stream pressure-swing distillation arrangement for separating a maximum-boiling azeotrope [J]. Applied Thermal Engineering, 2020, 173: 115228. |
74 | 吕新宇, 赵磊, 汪文丞, 等. 热泵自夹带共沸精馏分离乙醇-甲苯-水三元共沸混合物 [J]. 常州大学学报(自然科学版), 2017, 29(6): 26-31. |
Lyu X Y, Zhao L, Wang W C, et al. Heat-pump azeotropic distillation for ternary azeotrope ethanol-toluene water separation [J]. Journal of Changzhou University(Natural Science Edition), 2017, 29(6): 26-31. | |
75 | Chen J, Ye Q, Liu T, et al. Improving the performance of heterogeneous azeotropic distillation via self-heat recuperation technology [J]. Chemical Engineering Research and Design, 2019, 141: 516-528. |
76 | Yang A, Jin S, Shen W, et al. Investigation of energy-saving azeotropic dividing wall column to achieve cleaner production via heat exchanger network and heat pump technique [J]. Journal of Cleaner Production, 2019, 234: 410-422. |
77 | 袁俊, 杨建明, 赵锋伟, 等. 热泵变压精馏分离乙二胺水溶液的模拟 [J]. 化学工程, 2015, 43(4): 75-78. |
Yuan J, Yang J M, Zhao F W, et al. Simulation on separation of ethylenediamine and water by heat-pump pressure swing distillation [J]. Chemical Engineering(China), 2015, 43(4): 75-78. | |
78 | Luyben W L. Design and control of a pressure-swing distillation process with vapor recompression [J]. Chemical Engineering and Processing - Process Intensification, 2018, 123: 174-184. |
79 | Zhang Q, Liu M, Zeng A. Performance enhancement of pressure-swing distillation process by the combined use of vapor recompression and thermal integration [J]. Computers & Chemical Engineering, 2018, 120: 30-45. |
80 | You X, Rodriguez-Donis I, Gerbaud V. Reducing process cost and CO2 emissions for extractive distillation by double-effect heat integration and mechanical heat pump [J]. Applied Energy, 2016, 166: 128-140. |
81 | Zhang Q, Shi P, Zeng A, et al. Dynamic control analysis of intensified extractive distillation process with vapor recompression [J]. Separation and Purification Technology, 2020, 233: 116016. |
82 | Patraşcu I, Bildea C S, Kiss A A. Dynamics and control of a heat pump assisted extractive dividing-wall column for bioethanol dehydration [J]. Chemical Engineering Research and Design, 2017, 119: 66-74. |
83 | Quoilin S, Broek M V D, Declaye S, et al. Techno-economic survey of Organic Rankine Cycle(ORC) systems [J]. Renewable and Sustainable Energy Reviews, 2013, 22: 168-186. |
84 | Lecompte S, Huisseune H, van den Broek M, et al. Review of organic Rankine cycle(ORC) architectures for waste heat recovery [J]. Renewable and Sustainable Energy Reviews, 2015, 47: 448-461. |
85 | Wang E H, Zhang H G, Fan B Y, et al. Study of working fluid selection of organic Rankine cycle(ORC) for engine waste heat recovery [J]. Energy, 2011, 36(5): 3406-3418. |
86 | Yan C, Yang A, Chien I L, et al. Advanced exergy analysis of organic Rankine cycles for Fischer-Tropsch syngas production with parallel dry and steam methane reforming [J]. Energy Conversion and Management, 2019, 199: 111963. |
87 | Zhang X, Wu L, Wang X, et al. Comparative study of waste heat steam SRC, ORC and S-ORC power generation systems in medium-low temperature [J]. Applied Thermal Engineering, 2016, 106: 1427-1439. |
88 | 杨德明, 顾强, 朱碧云, 等. 基于有机朗肯循环的混合二甲苯MVR热泵精馏工艺 [J]. 化工学报, 2017, 68(12): 4641-4648. |
Yang D M, Gu Q, Zhu B Y, et al. MVR heat pump distillation process of mixed xylene based on organic Rankine cycle [J]. CIESC Journal, 2017, 68(12): 4641-4648. | |
89 | Gao X, Gu Q, Ma J, et al. MVR heat pump distillation coupled with ORC process for separating a benzene-toluene mixture [J]. Energy, 2018, 143: 658-665. |
90 | 杨德明, 朱碧云, 顾强, 等. 基于机械蒸汽再压缩和有机朗肯循环技术的双溶剂协同萃取精馏分离乙酸甲酯-甲醇-水节能工艺 [J]. 化工进展, 2018, 37(5): 2010-2015. |
Yang D M, Zhu B Y, Gu Q, et al. Double solvent synergistic extractive distillation for methyl acetate-methanol-water based on MVR and ORC technology [J]. Chemical Industry and Engineering Progress, 2018, 37(5): 2010-2015. | |
91 | Hipólito-Valencia B J, Vázquez-Ojeda M, Segovia-Hernández J G, et al. Waste heat recovery through organic Rankine cycles in the bioethanol separation process [J]. Industrial & Engineering Chemistry Research, 2014, 53(16): 6773-6788. |
92 | Li X, Cui C, Li H, et al. Process synthesis and simultaneous optimization of extractive distillation system integrated with organic Rankine cycle and economizer for waste heat recovery [J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 102: 61-72. |
93 | Yang A, Su Y, Shen W, et al. Multi-objective optimization of organic Rankine cycle system for the waste heat recovery in the heat pump assisted reactive dividing wall column [J]. Energy Conversion and Management, 2019, 199: 112041. |
94 | 张吕鸿, 刘建宾, 高鑫, 等. 差压热耦合精馏分离甲基环戊烷/苯过程的动态性能研究 [J]. 现代化工, 2012, 32(11): 97-102. |
Zhang L H, Liu J B, Gao X, et al. Study on dynamic characteristics of pressure-swing thermally coupled distillation in separation of methyl-cyclopentane / benzene mixture [J]. Modern Chemical Industry, 2012, 32(11): 97-102. | |
95 | 李洪, 李鑫钢, 罗铭芳. 差压热耦合蒸馏节能技术 [J]. 化工进展, 2008, (7): 1125-1128. |
Li H, Li X G, Luo M F. Different pressure thermally coupled distillation technology for energy saving [J]. Chemical Industry and Engineering Progress, 2008, (7): 1125-1128. | |
96 | 杨德明, 廖巧, 王杨. 差压热耦合精馏回收处理含二甲基乙酰胺废水的工艺研究 [J]. 现代化工, 2010, 30(9): 65-67. |
Yang D M, Liao Q, Wang Y. Process research on treatment of wastewater containing DMAC by differential pressure thermally coupled distillation [J]. Modern Chemical Industry, 2010, 30(9): 65-67. | |
97 | 赵天龙. 基于反应精馏的乙酸异丙酯合成过程设计、节能与控制研究 [D].青岛: 中国石油大学(华东), 2018. |
Zhao T L. Design, Energy saving and control strategy research on synthesis of isopropyl acetate based on reactive distillation [D].Qingdao: China University of Petroleum, 2018. | |
98 | Gao X, Wang F, Li H, et al. Heat-integrated reactive distillation process for TAME synthesis [J]. Separation and Purification Technology, 2014, 132: 468-478. |
99 | Li L, Sun L, Wang J, et al. Design and control of different pressure thermally coupled reactive distillation for methyl acetate hydrolysis [J]. Industrial & Engineering Chemistry Research, 2015, 54(49): 12342-12353. |
100 | Sun S, Yang A, Chien I L, et al. Intensification and performance assessment for synthesis of 2-methoxy-2-methyl-heptane through the combined use of different pressure thermally coupled reactive distillation and heat integration technique [J]. Chemical Engineering and Processing - Process Intensification, 2019, 142: 107561. |
101 | Yang A, Sun S, Eslamimanesh A, et al. Energy-saving investigation for diethyl carbonate synthesis through the reactive dividing wall column combining the vapor recompression heat pump or different pressure thermally coupled technique [J]. Energy, 2019, 172: 320-332. |
[1] | 赵亚欣, 张雪芹, 王荣柱, 孙国, 姚善泾, 林东强. 流穿模式离子交换层析去除单抗聚集体[J]. 化工学报, 2023, 74(9): 3879-3887. |
[2] | 张佳怡, 何佳莉, 谢江鹏, 王健, 赵鹬, 张栋强. 渗透汽化技术用于锂电池生产中N-甲基吡咯烷酮回收的研究进展[J]. 化工学报, 2023, 74(8): 3203-3215. |
[3] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[4] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[5] | 刘爽, 张霖宙, 许志明, 赵锁奇. 渣油及其组分黏度的分子层次组成关联研究[J]. 化工学报, 2023, 74(8): 3226-3241. |
[6] | 文兆伦, 李沛睿, 张忠林, 杜晓, 侯起旺, 刘叶刚, 郝晓刚, 官国清. 基于自热再生的隔壁塔深冷空分工艺设计及优化[J]. 化工学报, 2023, 74(7): 2988-2998. |
[7] | 张缘良, 栾昕奇, 苏伟格, 李畅浩, 赵钟兴, 周利琴, 陈健民, 黄艳, 赵祯霞. 离子液体复合萃取剂选择性萃取尼古丁的研究及DFT计算[J]. 化工学报, 2023, 74(7): 2947-2956. |
[8] | 高金明, 郭玉娇, 鄂承林, 卢春喜. 一种封闭罩内顺流多旋臂气液分离器的分离特性研究[J]. 化工学报, 2023, 74(7): 2957-2966. |
[9] | 毕恩哲, 李双喜, 沙廉翔, 刘登宇, 陈凯放. 高温动压涨圈密封结构参数多目标优化分析[J]. 化工学报, 2023, 74(6): 2565-2579. |
[10] | 韩奎奎, 谭湘龙, 李金芝, 杨婷, 张春, 张永汾, 刘洪全, 于中伟, 顾学红. 四通道中空纤维MFI分子筛膜用于二甲苯异构体分离[J]. 化工学报, 2023, 74(6): 2468-2476. |
[11] | 朱兴驰, 郭志远, 纪志永, 汪婧, 张盼盼, 刘杰, 赵颖颖, 袁俊生. 选择性电渗析镁锂分离过程模拟优化[J]. 化工学报, 2023, 74(6): 2477-2485. |
[12] | 蔺彩虹, 王丽, 吴瑜, 刘鹏, 杨江峰, 李晋平. 沸石中碱金属阳离子对CO2/N2O吸附分离性能的影响[J]. 化工学报, 2023, 74(5): 2013-2021. |
[13] | 孙永尧, 高秋英, 曾文广, 王佳铭, 陈艺飞, 周永哲, 贺高红, 阮雪华. 面向含氮油田伴生气提质利用的膜耦合分离工艺设计优化[J]. 化工学报, 2023, 74(5): 2034-2045. |
[14] | 刘尚豪, 贾胜坤, 罗祎青, 袁希钢. 基于梯度提升决策树的三组元精馏流程结构最优化[J]. 化工学报, 2023, 74(5): 2075-2087. |
[15] | 张正, 何永平, 孙海东, 张荣子, 孙正平, 陈金兰, 郑一璇, 杜晓, 郝晓刚. 蛇形流场电控离子交换装置用于选择性提锂[J]. 化工学报, 2023, 74(5): 2022-2033. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||