化工学报 ›› 2022, Vol. 73 ›› Issue (2): 681-688.DOI: 10.11949/0438-1157.20211019
收稿日期:
2021-07-22
修回日期:
2021-09-30
出版日期:
2022-02-05
发布日期:
2022-02-18
通讯作者:
胡方圆,蹇锡高
作者简介:
王哲(1991—),女,博士研究生,Zhe WANG1(),Yuan ZU1,Fangyuan HU2(),Xigao JIAN1()
Received:
2021-07-22
Revised:
2021-09-30
Online:
2022-02-05
Published:
2022-02-18
Contact:
Fangyuan HU,Xigao JIAN
摘要:
采用差示扫描量热法(DSC)对含杂萘联苯结构环氧单体(3EPZ)与聚醚胺(ED-2003)的固化过程进行研究。采用Starink模型及自催化模型获得了不同转化率下体系的活化能及相关动力学参数,并建立了动力学方程。实验结果曲线与模型计算结果曲线的相关系数大于99%,表明所建立的自催化动力学模型能够较好地描述体系的固化过程。
中图分类号:
王哲, 祖愿, 胡方圆, 蹇锡高. 含杂萘联苯结构的环氧树脂固化动力学分析[J]. 化工学报, 2022, 73(2): 681-688.
Zhe WANG, Yuan ZU, Fangyuan HU, Xigao JIAN. Kinetic analysis of curing of epoxy resin containing phthalazinone structure[J]. CIESC Journal, 2022, 73(2): 681-688.
β /(K/min) | Ti/K | Tp/K | Tf/K |
---|---|---|---|
5 | 353 | 413 | 478 |
10 | 358 | 428 | 459 |
15 | 366 | 435 | 483 |
20 | 375 | 458 | 515 |
表1 不同升温速率下环氧树脂的固化特征温度
Table 1 The characteristic temperature of curing reaction at different heating rate
β /(K/min) | Ti/K | Tp/K | Tf/K |
---|---|---|---|
5 | 353 | 413 | 478 |
10 | 358 | 428 | 459 |
15 | 366 | 435 | 483 |
20 | 375 | 458 | 515 |
转化率 | 斜率 | 活化能/(kJ/mol) |
---|---|---|
0.1 | -5297 | 44.0 |
0.2 | -5255 | 43.6 |
0.3 | -5200 | 43.2 |
0.4 | -5189 | 43.1 |
0.5 | -5141 | 42.7 |
0.6 | -5145 | 42.7 |
0.7 | -5113 | 42.5 |
0.8 | -5100 | 42.4 |
0.9 | -5119 | 42.5 |
表2 Starink方程中的相关数据
Table 2 The relevant data of the Starink equation
转化率 | 斜率 | 活化能/(kJ/mol) |
---|---|---|
0.1 | -5297 | 44.0 |
0.2 | -5255 | 43.6 |
0.3 | -5200 | 43.2 |
0.4 | -5189 | 43.1 |
0.5 | -5141 | 42.7 |
0.6 | -5145 | 42.7 |
0.7 | -5113 | 42.5 |
0.8 | -5100 | 42.4 |
0.9 | -5119 | 42.5 |
β/(K/min) | lnA | n | m | 相关系数(R2) |
---|---|---|---|---|
5 | 7.62 | 0.76 | 0.52 | 0.9993 |
10 | 7.65 | 0.67 | 0.53 | 0.9968 |
15 | 7.97 | 0.73 | 0.53 | 0.9954 |
20 | 7.33 | 0.67 | 0.53 | 0.9965 |
均值 | 7.64 | 0.71 | 0.53 | — |
表3 经计算的体系动力学参数
Table 3 Calculated kinetic parameters for the system
β/(K/min) | lnA | n | m | 相关系数(R2) |
---|---|---|---|---|
5 | 7.62 | 0.76 | 0.52 | 0.9993 |
10 | 7.65 | 0.67 | 0.53 | 0.9968 |
15 | 7.97 | 0.73 | 0.53 | 0.9954 |
20 | 7.33 | 0.67 | 0.53 | 0.9965 |
均值 | 7.64 | 0.71 | 0.53 | — |
1 | Xu Y J, Wang J, Tan Y, et al. A novel and feasible approach for one-pack flame-retardant epoxy resin with long pot life and fast curing[J]. Chemical Engineering Journal, 2018, 337: 30-39. |
2 | 高宏娟, 任伟民. 内酯和环氧烷烃共聚合成聚酯-聚醚共聚物的研究进展[J]. 化工学报, 2021, 72(1): 440-451. |
Gao H J, Ren W M. Review on synthesis of polyether-co-polyester from copolymerization of epoxides and lactones[J]. CIESC Journal, 2021, 72(1): 440-451. | |
3 | Huo S Q, Yang S, Wang J, et al. A liquid phosphorus-containing imidazole derivative as flame-retardant curing agent for epoxy resin with enhanced thermal latency, mechanical, and flame-retardant performances[J]. Journal of Hazardous Materials, 2020, 386: 121984. |
4 | Wang S, Ma S Q, Li Q, et al. Facile in situ preparation of high-performance epoxy vitrimer from renewable resources and its application in nondestructive recyclable carbon fiber composite[J]. Green Chemistry, 2019, 21(6): 1484-1497. |
5 | Gu J W, Liang C B, Zhao X M, et al. Highly thermally conductive flame-retardant epoxy nanocomposites with reduced ignitability and excellent electrical conductivities[J]. Composites Science and Technology, 2017, 139: 83-89. |
6 | Wang S, Ma S Q, Xu C X, et al. Vanillin-derived high-performance flame retardant epoxy resins: facile synthesis and properties[J]. Macromolecules, 2017, 50(5): 1892-1901. |
7 | Yang X T, Guo Y Q, Luo X, et al. Self-healing, recoverable epoxy elastomers and their composites with desirable thermal conductivities by incorporating BN fillers viain-situ polymerization[J]. Composites Science and Technology, 2018, 164: 59-64. |
8 | Zhang J H, Kong Q H, Wang D Y. Simultaneously improving the fire safety and mechanical properties of epoxy resin with Fe-CNTs via large-scale preparation[J]. Journal of Materials Chemistry A, 2018, 6(15): 6376-6386. |
9 | 杜威, 张志华, 段学志, 等. 丙烯氢氧环氧化动力学与反应器概念设计研究进展[J]. 化工学报, 2021, 72(1): 116-131. |
Du W, Zhang Z H, Duan X Z, et al. A review on kinetics and reactor concept design of propylene epoxidation using H2 and O2[J]. CIESC Journal, 2021, 72(1): 116-131. | |
10 | Mehra N, Mu L W, Ji T, et al. Thermal transport in polymeric materials and across composite interfaces[J]. Applied Materials Today, 2018, 12: 92-130. |
11 | 刘晓东, 程珏, 林欣,等. 环氧树脂和环氧/环硫树脂与胺的固化反应动力学[J]. 化工学报, 2013, 64(11): 4046-4053. |
Liu X D, Cheng J, Lin X, et al. Curing kinetics of epoxy resins/amine system and epoxy/episulfide resin/amine system[J]. CIESC Journal, 2013, 64(11): 4046-4053. | |
12 | Xu Y J, Chen L, Rao W H, et al. Latent curing epoxy system with excellent thermal stability, flame retardance and dielectric property[J]. Chemical Engineering Journal, 2018, 347: 223-232. |
13 | Genier F S, Barna J, Wang J Y, et al. A solid polymer electrolyte from photo-crosslinked polytetrahydrofuran and a cycloaliphatic epoxide for lithium-ion conduction[J]. MRS Advances, 2020, 5(48/49): 2467-2476. |
14 | Na W, Lee A S, Lee J H, et al. Hybrid ionogel electrolytes with POSS epoxy networks for high temperature lithium ion capacitors[J]. Solid State Ionics, 2017, 309: 27-32. |
15 | Grewal M S, Tanaka M, Kawakami H. Bifunctional poly(ethylene glycol) based crosslinked network polymers as electrolytes for all-solid-state lithium ion batteries[J]. Polymer International, 2019, 68(4): 684-693. |
16 | Tian G Y, Zhao Z J, Zinkevich T, et al. A crosslinked polyethyleneglycol solid electrolyte dissolving lithium bis(trifluoromethylsulfonyl)imide for rechargeable lithium batteries[J]. ChemSusChem, 2019, 12(20): 4708-4718. |
17 | Seo J, Singh A K, Zhang Y C, et al. Electrolyte-resistant epoxy for bonding batteries based on sandwich structures[J]. Journal of Applied Polymer Science, 2018, 135(15): 46059. |
18 | Lim J Y, Kang D A, Kim N U, et al. Bicontinuously crosslinked polymer electrolyte membranes with high ion conductivity and mechanical strength[J]. Journal of Membrane Science, 2019, 589: 117250. |
19 | Shin M S, Lim S, Park J H, et al. Thermally crosslinked and quaternized polybenzimidazole ionomer binders for solid alkaline fuel cells[J]. International Journal of Hydrogen Energy, 2020, 45(20): 11773-11783. |
20 | Wu F, Chen N, Chen R J, et al. Organically modified silica-supported ionogels electrolyte for high temperature lithium-ion batteries[J]. Nano Energy, 2017, 31: 9-18. |
21 | Na R Q, Lu N, Zhang S L, et al. Facile synthesis of a high-performance, fire-retardant organic gel polymer electrolyte for flexible solid-state supercapacitors[J]. Electrochimica Acta, 2018, 290: 262-272. |
22 | 文秀芳, 田勇, 皮丕辉, 等. 聚苯醚/环氧体系非等温固化行为及固化工艺[J]. 化工学报, 2007, 58(7): 1875-1879. |
Wen X F, Tian Y, Pi P H, et al. Nonisothermal curing behavior and curing technics of PPE/EP system[J]. Journal of Chemical Industry and Engineering (China), 2007, 58(7): 1875-1879. | |
23 | Tezel G B, Sarmah A, Desai S C, et al. Kinetics of carbon nanotube-loaded epoxy curing: rheometry, differential scanning calorimetry, and radio frequency heating[J]. Carbon, 2021, 175: 1-10. |
24 | Bornosuz N V, Gorbunova I Y, Petrakova V V, et al. Isothermal kinetics of epoxyphosphazene cure[J]. Polymers, 2021, 13(2): 297. |
25 | Bachmann J, Gleis E, Schmölzer S, et al. Photo-DSC method for liquid samples used in vat photopolymerization[J]. Analytica Chimica Acta, 2021, 1153: 338268. |
26 | Kumar D, Choudhary V. Curing kinetics and thermal properties of imide containing phthalonitrile resin using aromatic amines[J]. Thermochimica Acta, 2020, 693: 178749. |
27 | Lascano D, Quiles-Carrillo L, Balart R, et al. Kinetic analysis of the curing of a partially biobased epoxy resin using dynamic differential scanning calorimetry[J]. Polymers, 2019, 11(3): 391. |
28 | Zheng T, Wang X D, Lu C R, et al. Studies on curing kinetics and tensile properties of silica-filled phenolic amine/epoxy resin nanocomposite[J]. Polymers, 2019, 11(4): 680. |
29 | Vyazovkin S, Chrissafis K, Lorenzo M L, et al. ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations[J]. Thermochimica Acta, 2014, 590: 1-23. |
30 | Omrani A, Rostami A A, Khostavan S, et al. Preparation, characterization and application of advanced isoconversional kinetics to epoxy/1,4-bis(3-aminopropoxy) butane/MWCNT nanocomposite[J]. Composites Part A: Applied Science and Manufacturing, 2012, 43(3): 381-387. |
31 | 张超. 酚醛树脂的固化动力学研究[D]. 武汉: 武汉理工大学, 2010. |
Zhang C. Kinetic study of phenolic formaldehyde resin cure[D]. Wuhan: Wuhan University of Technology, 2010. | |
32 | Yang R T, Steinberg M. Reaction kinetics and differential thermal analysis[J]. The Journal of Physical Chemistry, 1976, 80(9): 965-968. |
33 | Crane L W, Dynes P J, Kaelble D H. Analysis of curing kinetics in polymer composites[J]. Journal of Polymer Science: Polymer Letters Edition, 1973, 11(8): 533-540. |
[1] | 赵婧, 顾程文, 蹇锡高, 翁志焕. 厚朴酚基环氧树脂防腐涂层的制备及性能评价[J]. 化工学报, 2023, 74(7): 3010-3017. |
[2] | 郑杰元, 张先伟, 万金涛, 范宏. 丁香酚环氧有机硅树脂的制备及其固化动力学研究[J]. 化工学报, 2023, 74(2): 924-932. |
[3] | 王建, 雷子萱, 姚家钰, 李建, 刘育红. 对苯二甲醛酚醛树脂的制备及其固化动力学研究[J]. 化工学报, 2022, 73(3): 1403-1415. |
[4] | 韩维辰, 王佳铭, 贺曼罗, 贺高红, 焉晓明, 阮雪华. 潜伏型环氧固化剂甲基异丁基酮二亚胺的合成及工艺优化[J]. 化工学报, 2021, 72(7): 3832-3838. |
[5] | 金晶, 安秋凤, 杨博文, 史书源, 田华鹏. 环氧基POSS改性环氧树脂的研制与性能研究[J]. 化工学报, 2020, 71(5): 2432-2439. |
[6] | 于守武, 肖淑娟, 赵泽文, 霍晓文, 魏俊富. 蜜胺-环氧树脂双层包覆聚磷酸铵及其阻燃PP的研究[J]. 化工学报, 2019, 70(6): 2370-2376. |
[7] | 倪卓, 林煜豪, 黄苇颖, 林丽蓉. 环氧树脂微胶囊合成及其反应动力学[J]. 化工学报, 2018, 69(4): 1790-1798. |
[8] | 张继宗, 常厚春, 常建民, 龙金星, 李雪辉. 生物油淀粉胶黏剂固化特性研究[J]. 化工学报, 2018, 69(12): 5309-5315. |
[9] | 杨泽, 胡冬冬, 刘涛, 曹堃, 赵玲. 高压气体氛围中的聚氨酯非等温固化动力学[J]. 化工学报, 2018, 69(11): 4728-4736. |
[10] | 陈杨, 史铁钧, 钱莹, 何涛. 新型含硼苯并噁嗪的合成及其与环氧树脂共混热性能[J]. 化工学报, 2017, 68(6): 2604-2610. |
[11] | 杜朋亚, 边锋, 姚蒙蒙, 常达, 唐二军. 高阻尼性涂层用环氧-丙烯酸酯复合乳液的合成[J]. 化工学报, 2016, 67(10): 4508-4513. |
[12] | 王权, 史铁钧, 张焱, 虞伕, 刘建华. 聚双胍/环氧树脂体系潜伏性固化过程[J]. 化工学报, 2015, 66(1): 464-470. |
[13] | 王权, 史铁钧, 虞伕, 刘建华, 周讯. 新型潜伏性固化剂的合成及性能[J]. 化工学报, 2014, 65(9): 0-0. |
[14] | 王权, 史铁钧, 虞伕, 刘建华, 周讯. 新型潜伏性固化剂的合成及性能[J]. 化工学报, 2014, 65(9): 3712-3717. |
[15] | 周建萍, 赵海芳, 伍辉儒, 刘志雷, 贾仕君. 热引发前线聚合法固化脂环族环氧树脂[J]. 化工学报, 2014, 65(8): 3283-3289. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||