化工学报 ›› 2022, Vol. 73 ›› Issue (2): 689-698.DOI: 10.11949/0438-1157.20211319

• 催化、动力学与反应器 • 上一篇    下一篇

负载型Co基双功能催化剂上戊酸酯生物燃料的制备

王吴玉1,3(),史玉竹1,3,严龙1,张兴华2,马隆龙2,张琦2()   

  1. 1.中国科学院广州能源研究所,中国科学院可再生能源重点实验室,广东 广州 510640
    2.东南大学能源与环境学院,能源热转换及其过程测控教育部重点实验室,江苏 南京 210096
    3.中国科学技术大学纳米科学技术学院,江苏 苏州 215123
  • 收稿日期:2021-09-10 修回日期:2021-11-29 出版日期:2022-02-05 发布日期:2022-02-18
  • 通讯作者: 张琦
  • 作者简介:王吴玉(1997—),男,硕士研究生,wwy97@mail.ustc.edu.cn
  • 基金资助:
    国家自然科学基金面上项目(51876209);国家重点研发计划项目(2019YFD1100601);中科院战略先导科技专项A类课题(XDA21060102);“广东特支计划”创新领军人才项目(2019TX05l362);广东省“珠江人才计划”本土创新科研团队项目(2017BT01N092);广东省基础与应用基础研究基金项目(2020A1515011540)

Synthesis of valerate biofuels on supported Co-based bifunctional catalysts

Wuyu WANG1,3(),Yuzhu SHI1,3,Long YAN1,Xinghua ZHANG2,Longlong MA2,Qi ZHANG2()   

  1. 1.Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, Guangdong, China
    2.Key Laboratory of Energy Thermal Conversion and Process Measurement and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, Jiangsu, China
    3.Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, Jiangsu, China
  • Received:2021-09-10 Revised:2021-11-29 Online:2022-02-05 Published:2022-02-18
  • Contact: Qi ZHANG

摘要:

采用浸渍法制备了HZSM-5、HY、Hβ以及MCM-22四种载体上负载Co的催化剂,在高压反应釜中,开展了以乙酰丙酸乙酯为原料一步法加氢脱氧合成戊酸乙酯以及戊酸生物燃料的研究。采用XRD、XPS、TEM、FT-IR、NH3-TPD、H2-TPR、py-FTIR、ICP-AES等对催化剂进行表征。结果表明,10Co/HZSM-5催化剂由于Co在HZSM-5上分布均匀,并且B酸酸性、总酸量以及还原性能最优,在保持较高的反应性能的同时,提高了产物的选择性,具有较高的催化性能。进一步对反应温度、反应压力等进行优化,在反应温度为240℃、压力为3 MPa、反应3 h时,以正辛烷作溶剂,催化剂表现出较高的催化性能,乙酰丙酸乙酯的转化率达到100%,戊酸酯和戊酸的总收率可达90%。

关键词: 乙酰丙酸乙酯, 生物燃料, 加氢脱氧, 钴基催化剂, 分子筛

Abstract:

Four types of Co-supported catalysts, HZSM-5, HY, Hβ and MCM-22, were prepared by the impregnation method. In the high-pressure reactor, the prepared catalyst is used as a raw material for one-step hydrodeoxygenation of ethyl levulinate to synthesize ethyl valerate and valeric acid biofuel. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), Fourier infrared (FT-IR), NH3-TPD, H2-TPR, py-FTIR, ICP-AES and other technologies are used for catalyst characterization. The results show that, because Co is uniformly distributed on HZSM-5, B acidity, total acidity and reduction performance are the best, while maintaining high reactivity, it improves the selectivity of the product. Therefore, the 10Co/HZSM-5 catalyst has higher catalytic performance. The reaction temperature, reaction pressure, etc. are further optimized. When the reaction temperature is 240℃, the pressure is 3 MPa, and the reaction is 3 h, with n-octane as the solvent, the catalyst shows higher catalytic performance, and the conversion rate of ethyl levulinate reaches 100%, the total yield of valerate and valeric acid can reach 90%.

Key words: ethyl levulinate, biofuel, hydrodeoxygenation, cobalt-based catalyst, molecular sieves

中图分类号: