化工学报 ›› 2022, Vol. 73 ›› Issue (2): 689-698.DOI: 10.11949/0438-1157.20211319
王吴玉1,3(),史玉竹1,3,严龙1,张兴华2,马隆龙2,张琦2()
收稿日期:
2021-09-10
修回日期:
2021-11-29
出版日期:
2022-02-05
发布日期:
2022-02-18
通讯作者:
张琦
作者简介:
王吴玉(1997—),男,硕士研究生,基金资助:
Wuyu WANG1,3(),Yuzhu SHI1,3,Long YAN1,Xinghua ZHANG2,Longlong MA2,Qi ZHANG2()
Received:
2021-09-10
Revised:
2021-11-29
Online:
2022-02-05
Published:
2022-02-18
Contact:
Qi ZHANG
摘要:
采用浸渍法制备了HZSM-5、HY、Hβ以及MCM-22四种载体上负载Co的催化剂,在高压反应釜中,开展了以乙酰丙酸乙酯为原料一步法加氢脱氧合成戊酸乙酯以及戊酸生物燃料的研究。采用XRD、XPS、TEM、FT-IR、NH3-TPD、H2-TPR、py-FTIR、ICP-AES等对催化剂进行表征。结果表明,10Co/HZSM-5催化剂由于Co在HZSM-5上分布均匀,并且B酸酸性、总酸量以及还原性能最优,在保持较高的反应性能的同时,提高了产物的选择性,具有较高的催化性能。进一步对反应温度、反应压力等进行优化,在反应温度为240℃、压力为3 MPa、反应3 h时,以正辛烷作溶剂,催化剂表现出较高的催化性能,乙酰丙酸乙酯的转化率达到100%,戊酸酯和戊酸的总收率可达90%。
中图分类号:
王吴玉, 史玉竹, 严龙, 张兴华, 马隆龙, 张琦. 负载型Co基双功能催化剂上戊酸酯生物燃料的制备[J]. 化工学报, 2022, 73(2): 689-698.
Wuyu WANG, Yuzhu SHI, Long YAN, Xinghua ZHANG, Longlong MA, Qi ZHANG. Synthesis of valerate biofuels on supported Co-based bifunctional catalysts[J]. CIESC Journal, 2022, 73(2): 689-698.
Catalyst | Si/Al molar ratio | Conversion/% | Yield(C molar fraction)/% | ||
---|---|---|---|---|---|
GVL | PA | EP | |||
10Co/HZSM-5 | 21 | 98.70 | 41.91 | 12.97 | 20.32 |
10Co/Hβ | 25 | 97.65 | 55.95 | 8.52 | 16.29 |
10Co/MCM-22 | 30 | 92.37 | 57.72 | 8.67 | 12.80 |
10Co/HY | 26 | 90.06 | 62.28 | 6.34 | 10.96 |
表1 催化剂载体对EL转化的影响
Table 1 The conversion of EL over catalyst with different supports
Catalyst | Si/Al molar ratio | Conversion/% | Yield(C molar fraction)/% | ||
---|---|---|---|---|---|
GVL | PA | EP | |||
10Co/HZSM-5 | 21 | 98.70 | 41.91 | 12.97 | 20.32 |
10Co/Hβ | 25 | 97.65 | 55.95 | 8.52 | 16.29 |
10Co/MCM-22 | 30 | 92.37 | 57.72 | 8.67 | 12.80 |
10Co/HY | 26 | 90.06 | 62.28 | 6.34 | 10.96 |
催化剂 | 温度区间/℃ | 峰顶温度/℃ | 酸量/(μmol/g) |
---|---|---|---|
10Co/HZSM-5 | 100~390 | 242 | 771 |
10Co/Hβ | 100~410 | 231 | 579 |
10Co/MCM-22 | 100~390 | 239 | 711 |
10Co/HY | 100~450 | 231 | 421 |
表2 NH3-TPD测定的弱酸酸量分布情况
Table 2 The distribution of weak acids determined by NH3-TPD
催化剂 | 温度区间/℃ | 峰顶温度/℃ | 酸量/(μmol/g) |
---|---|---|---|
10Co/HZSM-5 | 100~390 | 242 | 771 |
10Co/Hβ | 100~410 | 231 | 579 |
10Co/MCM-22 | 100~390 | 239 | 711 |
10Co/HY | 100~450 | 231 | 421 |
催化剂 | 温度区间/℃ | 峰顶温度/℃ | 酸量/(μmol/g) |
---|---|---|---|
10Co/HZSM-5 | 390~650 | 491 | 623 |
10Co/Hβ | 410~650 | 494 | 504 |
10Co/MCM-22 | 390~600 | 456 | 339 |
10Co/HY | 450~600 | 531 | 130 |
表3 NH3-TPD测定的强酸酸量分布情况
Table 3 The distribution of strong acids measured by NH3-TPD
催化剂 | 温度区间/℃ | 峰顶温度/℃ | 酸量/(μmol/g) |
---|---|---|---|
10Co/HZSM-5 | 390~650 | 491 | 623 |
10Co/Hβ | 410~650 | 494 | 504 |
10Co/MCM-22 | 390~600 | 456 | 339 |
10Co/HY | 450~600 | 531 | 130 |
Catalyst | Conversion/% | Yield (C mole fraction)/% | |||
---|---|---|---|---|---|
GVL | PA | EP | LA(乙酰丙酸) | ||
5Co/HZSM-5 | 86.57 | 55.46 | 9.00 | 10.39 | — |
10Co/HZSM-5 | 98.70 | 41.91 | 12.97 | 20.32 | — |
15Co/HZSM-5 | 96.74 | 42.46 | 11.39 | 20.72 | — |
表4 金属负载量对EL转化的影响
Table 4 The conversion of EL over catalyst with different metal loading.
Catalyst | Conversion/% | Yield (C mole fraction)/% | |||
---|---|---|---|---|---|
GVL | PA | EP | LA(乙酰丙酸) | ||
5Co/HZSM-5 | 86.57 | 55.46 | 9.00 | 10.39 | — |
10Co/HZSM-5 | 98.70 | 41.91 | 12.97 | 20.32 | — |
15Co/HZSM-5 | 96.74 | 42.46 | 11.39 | 20.72 | — |
Cycle | Yield/% | Conversion /% | ||
---|---|---|---|---|
EP | PA | GVL | ||
1 | 57.38 | 33.32 | — | 99 |
2 | 55.58 | 31.54 | — | 99 |
3 | 55.82 | 29.74 | — | 97 |
4 | 50.38 | 29.32 | 5.69 | 86.3 |
5 | 46.66 | 24.44 | 8.72 | 84.27 |
6 | 56.24 | 32.34 | — | 97 |
7 | 55.48 | 32.11 | — | 99 |
表5 催化剂循环实验
Table 5 Cyclic experiment of catalyst 10Co/HZSM-5
Cycle | Yield/% | Conversion /% | ||
---|---|---|---|---|
EP | PA | GVL | ||
1 | 57.38 | 33.32 | — | 99 |
2 | 55.58 | 31.54 | — | 99 |
3 | 55.82 | 29.74 | — | 97 |
4 | 50.38 | 29.32 | 5.69 | 86.3 |
5 | 46.66 | 24.44 | 8.72 | 84.27 |
6 | 56.24 | 32.34 | — | 97 |
7 | 55.48 | 32.11 | — | 99 |
1 | Sun P, Gao G, Zhao Z L, et al. Acidity-regulation for enhancing the stability of Ni/HZSM-5 catalyst for valeric biofuel production[J]. Applied Catalysis B: Environmental, 2016, 189: 19-25. |
2 | Yan K, Lafleur T, Wu X, et al. Cascade upgrading of γ-valerolactone to biofuels[J]. Chemical Communications (Cambridge, England), 2015, 51(32): 6984-6987. |
3 | Cai T M, Deng Q, Peng H L, et al. Synthesis of renewable C-C cyclic compounds and high-density biofuels using 5-hydromethylfurfural as a reactant[J]. Green Chemistry, 2020, 22(8): 2468-2473. |
4 | 张琦, 马隆龙, 张兴华. 生物质转化为高品位烃类燃料研究进展[J]. 农业机械学报, 2015, 46(1): 170-179. |
Zhang Q, Ma L L, Zhang X H. Progress in production of high-quality hydrocarbon fuels from biomass[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(1): 170-179. | |
5 | Yu Z H, Lu X B, Xiong J, et al. Transformation of levulinic acid to valeric biofuels: a review on heterogeneous bifunctional catalytic systems[J]. ChemSusChem, 2019, 12(17): 3915-3930. |
6 | Bozell J J, Moens L, Elliott D C, et al. Production of levulinic acid and use as a platform chemical for derived products[J]. Resources, Conservation and Recycling, 2000, 28(3/4): 227-239. |
7 | Buitrago-Sierra R, Serrano-Ruiz J C, Rodríguez-Reinoso F, et al. Ce promoted Pd-Nb catalysts for γ-valerolactone ring-opening and hydrogenation[J]. Green Chemistry, 2012, 14(12): 3318. |
8 | Pan T, Deng J, Xu Q, et al. Catalytic conversion of biomass-derived levulinic acid to valerate esters as oxygenated fuels using supported ruthenium catalysts[J]. Green Chemistry, 2013, 15(10): 2967. |
9 | Vennestrøm P N R, Osmundsen C M, Christensen C H, et al. Beyond petrochemicals: the renewable chemicals industry[J]. Angewandte Chemie International Edition, 2011, 50(45): 10502-10509. |
10 | Wang D L, Chen Z H, Yu J, et al. Effect of Si/Al ratio of HZSM-5 zeolites on catalytic upgrading of coal pyrolysis volatiles[J]. Journal of Fuel Chemistry and Technology, 2021, 49(5): 634-641. |
11 | Zhang Z Z, Liu N, An C X, et al. Effect of hierarchical ZSM-5 zeolites on product distribution of low rank coal fast pyrolysis in a fluidized bed[J]. Journal of Fuel Chemistry and Technology, 2021, 49(4): 407-414. |
12 | 王磊, 徐天晓, 韩燕絮, 等. Ru/有机改性蛭石催化乙酰丙酸甲酯加氢性能的研究[J]. 燃料化学学报, 2020, 48(1): 100-107. |
Wang L, Xu T X, Han Y X, et al. Study on the catalytic hydrogenation of methyl levulinate over Ru/organic modified vermiculite[J]. Journal of Fuel Chemistry and Technology, 2020, 48(1): 100-107. | |
13 | Lange J P, Price R, Ayoub P, et al. Valeric biofuels: a platform of cellulosic transportation fuels[J]. Angewandte Chemie, 2010, 122(26): 4581-4585. |
14 | Gu X M, Zhang B, Liang H J, et al. Pt/HZSM-5 catalyst synthesized by atomic layer deposition for aqueous-phase hydrogenation of levulinic acid to valeric acid[J]. Journal of Fuel Chemistry and Technology, 2017, 45(6): 714-722. |
15 | Pham H N, Pagan-Torres Y J, Serrano-Ruiz J C, et al. Improved hydrothermal stability of niobia-supported Pd catalysts[J]. Applied Catalysis A: General, 2011, 397(1/2): 153-162. |
16 | Hou M Y, Li G, Jin L J, et al. Pyrolysis behaviors of coal-related model compounds catalyzed by Ni-modified HZSM-5 zeolite[J]. Journal of Fuel Chemistry and Technology, 2021, 49(5): 582-588. |
17 | He J, Wu Z J, Gu Q Q, et al. Zeolite-tailored active site proximity for the efficient production of pentanoic biofuels[J]. Angewandte Chemie International Edition, 2021, 60(44): 23713-23721. |
18 | Li C, Ni X J, Di X, et al. Aqueous phase hydrogenation of levulinic acid to γ-valerolactone on supported Ru catalysts prepared by microwave-assisted thermolytic method[J]. Journal of Fuel Chemistry and Technology, 2018, 46(2): 161-170. |
19 | Dai N, Shang R, Fu M C, et al. Transfer hydrogenation of ethyl levulinate to γ-valerolactone catalyzed by iron complexes[J]. Chinese Journal of Chemistry, 2015, 33(4): 405-408. |
20 | Démolis A, Essayem N, Rataboul F. Synthesis and applications of alkyl levulinates[J]. ACS Sustainable Chemistry & Engineering, 2014, 2(6): 1338-1352. |
21 | Sun P, Gao G, Zhao Z L, et al. Stabilization of cobalt catalysts by embedment for efficient production of valeric biofuel[J]. ACS Catalysis, 2014, 4(11): 4136-4142. |
22 | Bermudez J M, Menéndez J A, Romero A A, et al. Continuous flow nanocatalysis: reaction pathways in the conversion of levulinic acid to valuable chemicals[J]. Green Chemistry, 2013, 15(10): 2786. |
23 | Serrano-Ruiz J C, Wang D, Dumesic J A. Catalytic upgrading of levulinic acid to 5-nonanone[J]. Green Chemistry, 2010, 12(4): 574. |
24 | Díaz U, Corma A. Layered zeolitic materials: an approach to designing versatile functional solids[J]. Dalton Transactions (Cambridge, England), 2014, 43(27): 10292-10316. |
25 | Corma A, Corell C, Pérez-Pariente J. Synthesis and characterization of the MCM-22 zeolite[J]. Zeolites, 1995, 15(1): 2-8. |
26 | Marlinda L, Al Muttaqii M, Roesyadi A, et al. Production of biofuel by hydrocracking of cerbera manghas oil using Co-Ni/HZSM-5 catalyst: effect of reaction temperature[J]. The Journal of Pure and Applied Chemistry Research, 2016, 5(3): 189-195. |
27 | Wang S R, Yin Q Q, Guo J F, et al. Improved Fischer-Tropsch synthesis for gasoline over Ru, Ni promoted Co/HZSM-5 catalysts[J]. Fuel, 2013, 108: 597-603. |
28 | Zhu Z Z, Lu G Z, Zhang Z G, et al. Highly active and stable Co3O4/ZSM-5 catalyst for propane oxidation: effect of the preparation method[J]. ACS Catalysis, 2013, 3(6): 1154-1164. |
29 | Feng X B, Tian M J, He C, et al. Yolk-shell-like mesoporous CoCrOx with superior activity and chlorine resistance in dichloromethane destruction[J]. Applied Catalysis B: Environmental, 2020, 264: 118493. |
30 | Su Y, Fu K X, Zheng Y F, et al. Catalytic oxidation of dichloromethane over Pt-Co/HZSM-5 catalyst: synergistic effect of single-atom Pt, Co3O4, and HZSM-5[J]. Applied Catalysis B: Environmental, 2021, 288: 119980. |
31 | Fei X Q, Cao S, Ouyang W L, et al. A convenient synthesis of core-shell Co3O4@ZSM-5 catalysts for the total oxidation of dichloromethane (CH2Cl2)[J]. Chemical Engineering Journal, 2020, 387: 123411. |
32 | Wang H T, Wu Y S, Li Y Z, et al. One-step synthesis of pentane fuel from γ-valerolactone with high selectivity over a Co/HZSM-5 bifunctional catalyst[J]. Green Chemistry, 2021, 23(13): 4780-4789. |
33 | Ren X Y, Cao J P, Zhao X Y, et al. Increasing light aromatic products during upgrading of lignite pyrolysis vapor over Co-modified HZSM-5[J]. Journal of Analytical and Applied Pyrolysis, 2018, 130: 190-197. |
34 | Furusawa T, Seshan K, Lefferts L, et al. Selective reduction of NO with propylene in the presence of oxygen over Co- and Pt-Co promoted HY[J]. Applied Catalysis B: Environmental, 2002, 39(3): 233-246. |
35 | Sabarish R, Unnikrishnan G. Polyvinyl alcohol/carboxymethyl cellulose/ZSM-5 zeolite biocomposite membranes for dye adsorption applications[J]. Carbohydrate Polymers, 2018, 199: 129-140. |
36 | Yu K, Kumar N, Roine J, et al. Synthesis and characterization of polypyrrole/H-beta zeolite nanocomposites[J]. RSC Adv., 2014, 4(62): 33120-33126. |
37 | 田丙伦, 舒玉瑛, 刘红梅, 等. Co-Mo/HZSM-5甲烷无氧芳构化催化剂上的积炭[J]. 催化学报, 2000, 21(3): 255-258. |
Tian B L, Shu Y Y, Liu H M, et al. Characterization of coke on Co-Mo/HZSM-5 catalyst for methane dehydro aromatization in the absence of oxygen[J]. Chinese Journal of Catalysis, 2000, 21(3): 255-258. | |
38 | 方辉煌, 吴历洁, 陈伟坤, 等. 生物质基含氧化合物在过渡金属碳化物上加氢脱氧研究进展[J]. 化工学报, 2021, 72(7): 3562-3575. |
Fang H H, Wu L J, Chen W K, et al. Recent progress on hydrodeoxygenation of biomass-derived oxygenates over transition metal carbides[J]. CIESC Journal, 2021, 72(7): 3562-3575. | |
39 | 马会霞, 周峰, 武光, 等. 多级孔HZSM-5分子筛催化快速热解生物质制芳烃[J]. 化工学报, 2020, 71(11): 5200-5207. |
Ma H X, Zhou F, Wu G, et al. Catalytic fast pyrolysis of biomass to aromatics over hierarchical HZSM-5[J]. CIESC Journal, 2020, 71(11): 5200-5207. | |
40 | 方书起, 石崇, 李攀, 等. Fe-Zn共改性ZSM-5催化作用下生物质快速热解特性研究[J]. 化工学报, 2020, 71(4): 1637-1645. |
Fang S Q, Shi C, Li P, et al. Study on rapid pyrolysis characteristics of biomass catalyzed by Fe-Zn co-modified ZSM-5[J]. CIESC Journal, 2020, 71(4): 1637-1645. |
[1] | 杨绍旗, 赵淑蘅, 陈伦刚, 王晨光, 胡建军, 周清, 马隆龙. Raney镍-质子型离子液体体系催化木质素平台分子加氢脱氧制备烷烃[J]. 化工学报, 2023, 74(9): 3697-3707. |
[2] | 韩奎奎, 谭湘龙, 李金芝, 杨婷, 张春, 张永汾, 刘洪全, 于中伟, 顾学红. 四通道中空纤维MFI分子筛膜用于二甲苯异构体分离[J]. 化工学报, 2023, 74(6): 2468-2476. |
[3] | 王荣, 王永洪, 张新儒, 李晋平. 6FDA型聚酰亚胺炭分子筛气体分离膜的构筑及其应用[J]. 化工学报, 2023, 74(4): 1433-1445. |
[4] | 王子健, 柯明, 李佳涵, 李舒婷, 孙巾茹, 童燕兵, 赵治平, 刘加英, 任璐. 短b轴ZSM-5分子筛制备方法及应用研究进展[J]. 化工学报, 2023, 74(4): 1457-1473. |
[5] | 白宇恩, 张彬瑞, 刘东阳, 赵亮, 高金森, 徐春明. ZSM-5分子筛酸性能和孔结构的协同作用对C5烯烃催化裂解性能的影响[J]. 化工学报, 2023, 74(1): 438-448. |
[6] | 张军, 胡升, 顾菁, 袁浩然, 陈勇. 甲醇体系电镀污泥衍生磁性多金属材料催化糠醛加氢转化[J]. 化工学报, 2022, 73(7): 2996-3006. |
[7] | 郑涛, 刘海燕, 张睿, 孟祥海, 岳源源, 刘植昌. 基于分子筛绿色合成的天然硅铝矿物介尺度活化研究进展[J]. 化工学报, 2022, 73(6): 2334-2351. |
[8] | 王婵, 肖国锡, 郭小雪, 徐人威, 岳源源, 鲍晓军. 基于介尺度结构解聚-重组装的Beta分子筛的绿色合成及应用[J]. 化工学报, 2022, 73(6): 2690-2697. |
[9] | 张红锐, 张田, 隆曦孜, 李先宁. 光催化与微生物燃料电池耦合对Cu-EDTA的降解特性[J]. 化工学报, 2022, 73(5): 2149-2157. |
[10] | 王旭, 张乐瑶, 张昊轩, 演嘉辉, 吴玉帅, 吴冬, 陈汇勇, 马晓迅. 中空孔结构对W掺杂MFI分子筛丙酮吸附行为的研究[J]. 化工学报, 2022, 73(3): 1194-1206. |
[11] | 罗俊仪, 吴石亮, 肖睿. 环烷烃与航空煤油掺混燃烧特性研究[J]. 化工学报, 2022, 73(2): 847-856. |
[12] | 苏畅, 冯晓博, 张立云, 陈峰, 赵小燕, 曹景沛. 四乙基氢氧化铵改性对HMOR分子筛结构及二甲醚羰基化性能的影响[J]. 化工学报, 2022, 73(2): 712-721. |
[13] | 高文莉, 辛忠. Fe对Ni/SBA-16催化CO低温甲烷化促进作用的研究[J]. 化工学报, 2022, 73(1): 241-254. |
[14] | 张超, 陈健, 殷文华, 沈圆辉, 钮朝阳, 余秀鑫, 张东辉, 唐忠利. 变压吸附氢气纯化过程瞬态分析[J]. 化工学报, 2022, 73(1): 308-321. |
[15] | 李腾飞, 缪赟, 杨柳, 王龙耀, 朱铧丞. 微波强化Y型分子筛离子交换技术[J]. 化工学报, 2021, 72(S1): 406-412. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||