1 |
Matthiesen J E, Carraher J M, Vasiliu M, et al. Electrochemical conversion of muconic acid to biobased diacid monomers[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(6): 3575-3585.
|
2 |
Wang W L, Xue L W, Zhang T S, et al. The influence of MgO/ZrO2/Al2O3 refractories on the refining process of Ti-containing steel based on kinetic study[J]. Ceramics International, 2020, 46(11): 17561-17568.
|
3 |
Chen B, Wu Q, Li J, et al. A novel and green method to synthesize a epoxidized biomass eucommia gum as the nanofiller in the epoxy composite coating with excellent anticorrosive performance[J]. Chemical Engineering Journal, 2020, 379: 122323.
|
4 |
Nabipour H, Wang X, Song L, et al. Facile synthesis of a novel zinc-triazole complex for simultaneous improvement in fire safety and mechanical properties of epoxy resins[J]. Composites Part A: Applied Science and Manufacturing, 2021, 143: 106284.
|
5 |
Waśkiewicz S, Zenkner K, Langer E W, et al. Organic coatings based on new Schiff base epoxy resins[J]. Progress in Organic Coatings, 2013, 76(7/8): 1040-1045.
|
6 |
Wan J T, Zhao J Q, Gan B, et al. Ultrastiff biobased epoxy resin with high Tg and low permittivity: from synthesis to properties[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(5): 2869-2880.
|
7 |
Xin J N, Li M, Li R, et al. Green epoxy resin system based on lignin and tung oil and its application in epoxy asphalt[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(5): 2754-2761.
|
8 |
Dai J Y, Teng N, Shen X B, et al. Synthesis of biobased benzoxazines suitable for vacuum-assisted resin transfer molding process via introduction of soft silicon segment[J]. Industrial & Engineering Chemistry Research, 2018, 57(8): 3091-3102.
|
9 |
Wang X, Leng W Q, Oshani Nayanathara R M, et al. Anticorrosive epoxy coatings from direct epoxidation of bioethanol fractionated lignin[J]. International Journal of Biological Macromolecules, 2022, 221: 268-277.
|
10 |
Li M L, Hao X H, Hu M L, et al. Synthesis of vanillin-based flame retardant epoxy coating on wood surface[J]. Progress in Organic Coatings, 2022, 172: 107161.
|
11 |
Zheng S L, Bellido-Aguilar D A, Hu J, et al. Waterborne bio-based epoxy coatings for the corrosion protection of metallic substrates[J]. Progress in Organic Coatings, 2019, 136: 105265.
|
12 |
Wang X, Nabipour H, Kan Y C, et al. A fully bio-based, anti-flammable and non-toxic epoxy thermosetting network for flame-retardant coating applications[J]. Progress in Organic Coatings, 2022, 172: 107095.
|
13 |
Huang J, Zhang J S, Zhu G Q, et al. Self-healing, high-performance, and high-biobased-content UV-curable coatings derived from rubber seed oil and itaconic acid[J]. Progress in Organic Coatings, 2021, 159: 106391.
|
14 |
Jiang H, Sun L, Zhang Y R, et al. Novel biobased epoxy resin thermosets derived from eugenol and vanillin[J]. Polymer Degradation and Stability, 2019, 160: 45-52.
|
15 |
Zhang Y T, Pang H, Wei D D, et al. Preparation and characterization of chemical grouting derived from lignin epoxy resin[J]. European Polymer Journal, 2019, 118: 290-305.
|
16 |
Ammar S, Iling A W M, Ramesh K, et al. Development of fully organic coating system modified with epoxidized soybean oil with superior corrosion protection performance[J]. Progress in Organic Coatings, 2020, 140: 105523.
|
17 |
何吉喆, 刘明言, 徐杨书函. 环氧豆油树脂涂层的防腐性能研究[J]. 化工学报, 2021, 72(2): 1067-1077.
|
|
He J Z, Liu M Y, Xu Y S H. Study on anticorrosive properties of epoxy soybean oil resin coating[J]. CIESC Journal, 2021, 72(2): 1067-1077.
|
18 |
赵晓磊, 侯桂香, 于守武. 植物酚型生物基环氧树脂研究进展[J]. 高分子材料科学与工程, 2022, 38(9): 167-175.
|
|
Zhao X L, Hou G X, Yu S W. Progress on research of plant phenolic bio-based epoxy resin[J]. Polymer Materials Science & Engineering, 2022, 38(9): 167-175.
|
19 |
翁志焕, 李佳惠, 戚裕, 等. 生物基环氧树脂高性能化和功能化的研究进展[J]. 中国材料进展, 2019, 38(10): 999-1008, 1016.
|
|
Weng Z H, Li J H, Qi Y, et al. Progress on high performance and functionalization of bio-based epoxy resins[J]. Materials China, 2019, 38(10): 999-1008, 1016.
|
20 |
宋乐群, 戚裕, 曹旗, 等. 高性能和厚朴酚生物基环氧树脂的性能调控[J]. 高分子材料科学与工程, 2022, 38(2): 1-7, 16.
|
|
Song L Q, Qi Y, Cao Q, et al. Rational regulation of performance on high-performance bio-based epoxy resin bearing honokiol moiety[J]. Polymer Materials Science & Engineering, 2022, 38(2): 1-7, 16.
|
21 |
戚裕. 耐高温本征阻燃高性能生物基环氧树脂的制备及性能研究[D]. 大连: 大连理工大学, 2021.
|
|
Qi Y. Preparation and properties of high-temperature resistant intrinsic flame retardant high-performance bio-based epoxy resin[D]. Dalian: Dalian University of Technology, 2021.
|
22 |
Qi Y, Weng Z H, Zhang K W, et al. Magnolol-based bio-epoxy resin with acceptable glass transition temperature, processability and flame retardancy[J]. Chemical Engineering Journal, 2020, 387: 124115.
|
23 |
Xu M Z, Lei Y X, Ren D X, et al. Thermal stability of allyl-functional phthalonitriles-containing benzoxazine/bismaleimide copolymers and their improved mechanical properties[J]. Polymers, 2018, 10(6): 596.
|
24 |
刘立立. 颜填料的特性及其对隔热涂料性能的影响[D]. 武汉: 武汉科技大学, 2015.
|
|
Liu L L. Characteristics of fillers and its effect on the properties of thermal insulation coatings[D]. Wuhan: Wuhan University of Science and Technology, 2015.
|
25 |
da Silva L R R, Carvalho B A, Pereira R C S, et al. Bio-based one-component epoxy resin: novel high-performance anticorrosive coating from agro-industrial byproduct[J]. Progress in Organic Coatings, 2022, 167: 106861.
|
26 |
Zhang Y Y, Chu L Y, Dai Z S, et al. Synergistically enhancing the performance of cardanol-rich epoxy anticorrosive coatings using cardanol-based reactive diluent and its functionalized graphene oxide[J]. Progress in Organic Coatings, 2022, 171: 107060.
|
27 |
Margarit-Mattos I C P. EIS and organic coatings performance: revisiting some key points[J]. Electrochimica Acta, 2020, 354: 136725.
|
28 |
Xing C, Wang W, Qu S, et al. Degradation of zinc-rich epoxy coating in 3.5% NaCl solution and evolution of its EIS parameters[J]. Journal of Coatings Technology and Research, 2021, 18(3): 843-860.
|
29 |
陈绪蕾, 彭强, 邓志强, 等. 氟化石墨烯硅烷功能化对环氧复合涂层耐腐蚀性的影响[J]. 涂料工业, 2022, 52(12): 1-8.
|
|
Chen X L, Peng Q, Deng Z Q, et al. Effect of fluorinated graphene silane functionalization on the corrosion resistance of epoxy composite coatings[J]. Paint & Coatings Industry, 2022, 52(12): 1-8.
|
30 |
莫梦婷. 聚氨酯/石墨烯复合涂层的制备及其防腐耐磨性能[D]. 北京: 中国科学院大学, 2016.
|
|
Mo M T. Preparation of polyurethane/graphene composite coating and its corrosion and wear resistance[D]. Beijing: University of Chinese Academy of Sciences, 2016.
|
31 |
刘雷, 徐萍. 跑合试验对螺杆变幅机构的必要性的实例分析[J]. 内燃机与配件, 2021(12): 57-58.
|
|
Liu L, Xu P. Example analysis of the necessity of running-in test for screw luffing mechanism[J]. Internal Combustion Engine & Parts, 2021(12): 57-58.
|
32 |
姜秀杰, 冷晓飞, 白杨, 等. 高耐划伤性航空耐磨涂料的研制[J]. 涂料工业, 2021, 51(6): 69-74.
|
|
Jiang X J, Leng X F, Bai Y, et al. Development of highly scratch resistant aviation wear-resistant coatings[J]. Paint & Coatings Industry, 2021, 51(6): 69-74.
|
33 |
李鹏. 基于衣康酸和大豆油的环保型光固化涂料的研究[D]. 太原: 中北大学, 2016.
|
|
Li P. Environment friendly UV-cured coatings based on itaconic acid and soybean oil[D]. Taiyuan: North University of China, 2016.
|
34 |
冯江波. 基于PANI/SiO2环氧防防腐涂层的制备及性能的研究[D]. 西安: 陕西科技大学, 2021.
|
|
Feng J B. Research on preparation and performance of epoxy anticorrosive coating based on PANI/SiO2 [D]. Xi'an: Shaanxi University of Science & Technology, 2021.
|