化工学报 ›› 2022, Vol. 73 ›› Issue (8): 3615-3624.DOI: 10.11949/0438-1157.20220344
李治东1(), 万佳琪2, 刘莹2, 唐艺溪2, 刘威2, 宋忠贤3, 张学军1()
收稿日期:
2022-03-07
修回日期:
2022-05-10
出版日期:
2022-08-05
发布日期:
2022-09-06
通讯作者:
张学军
作者简介:
李治东(1995—),男,硕士研究生,857227848@qq.com
基金资助:
Zhidong LI1(), Jiaqi WAN2, Ying LIU2, Yixi TANG2, Wei LIU2, Zhongxian SONG3, Xuejun ZHANG1()
Received:
2022-03-07
Revised:
2022-05-10
Online:
2022-08-05
Published:
2022-09-06
Contact:
Xuejun ZHANG
摘要:
采用水热法在不同pH条件下制备了一系列MnO2基催化剂,通过XRD、SEM、N2吸脱附等手段对其进行了表征,并评价了它们对甲苯催化氧化反应的催化活性。表征结果表明,不同的pH本质上改变了s反应溶液的初始H+浓度,从而影响了所得样品的结晶环境,并赋予它们不同的晶相。甲苯的催化氧化评价结果表明,催化剂的催化性能与α-MnO2的含量密切相关。当pH=11时所得到的MnO2-11催化剂,具有最大的比表面积和最多的缺陷结构,使其具有最佳的催化活性(T50=245℃和T90=256℃)和优异的循环稳定性。
中图分类号:
李治东, 万佳琪, 刘莹, 唐艺溪, 刘威, 宋忠贤, 张学军. 一步法合成α-MnO2/β-MnO2催化剂及其对甲苯催化氧化的性能研究[J]. 化工学报, 2022, 73(8): 3615-3624.
Zhidong LI, Jiaqi WAN, Ying LIU, Yixi TANG, Wei LIU, Zhongxian SONG, Xuejun ZHANG. α-MnO2/β-MnO2 catalysts synthesized by one-pot method and their catalytic performance for the oxidation of toluene[J]. CIESC Journal, 2022, 73(8): 3615-3624.
样品 | 比表面积 /(m2/g) | 平均孔径/ nm | 孔容积/(cm3/g) | 晶粒尺寸/nm |
---|---|---|---|---|
MnO2-12 | 58.5 | 27.1 | 0.3 | 37 |
MnO2-11 | 66.6 | 20.6 | 0.3 | 39 |
MnO2-9 | 20.8 | 26.8 | 0.1 | 67 |
MnO2-5 | 18.1 | 26.8 | 0.1 | 65 |
MnO2-1 | 62.5 | 24.2 | 0.3 | 15 |
表1 不同样品的比表面积、平均孔径、孔容积、晶粒尺寸
Table 1 BET surface areas, average pore sizes, pore volume, crystallite sizes of samples
样品 | 比表面积 /(m2/g) | 平均孔径/ nm | 孔容积/(cm3/g) | 晶粒尺寸/nm |
---|---|---|---|---|
MnO2-12 | 58.5 | 27.1 | 0.3 | 37 |
MnO2-11 | 66.6 | 20.6 | 0.3 | 39 |
MnO2-9 | 20.8 | 26.8 | 0.1 | 67 |
MnO2-5 | 18.1 | 26.8 | 0.1 | 65 |
MnO2-1 | 62.5 | 24.2 | 0.3 | 15 |
样品 | Mn3+/Mn4+ | Oads/Olatt |
---|---|---|
MnO2-12 | 1.23 | 0.179 |
MnO2-11 | 1.43 | 0.299 |
MnO2-9 | 1.21 | 0.167 |
MnO2-5 | 1.06 | 0.155 |
MnO2-1 | 1.34 | 0.204 |
表2 MnO2-X样品的 XPS结果
Table 2 The XPS data of the MnO2-X samples
样品 | Mn3+/Mn4+ | Oads/Olatt |
---|---|---|
MnO2-12 | 1.23 | 0.179 |
MnO2-11 | 1.43 | 0.299 |
MnO2-9 | 1.21 | 0.167 |
MnO2-5 | 1.06 | 0.155 |
MnO2-1 | 1.34 | 0.204 |
1 | Zheng J Y, Shao M, Che W W, et al. Speciated VOC emission inventory and spatial patterns of ozone formation potential in the Pearl River Delta, China[J]. Environmental Science & Technology, 2009, 43(22): 8580-8586. |
2 | Chang C H, Urban P L. Automated dual-chamber sampling system to follow dynamics of volatile organic compounds emitted by biological specimens[J]. Analytical Chemistry, 2018, 90(23): 13848-13854. |
3 | 刘伟, 李立清, 姚小龙, 等. 活性炭孔隙结构在其甲苯吸附中的作用[J]. 环境工程学报, 2012, 6(9): 3210-3218. |
Liu W, Li L Q, Yao X L, et al. Pore structure effects on activated carbon adsorption behavior for toluene[J]. Chinese Journal of Environmental Engineering, 2012, 6(9): 3210-3218. | |
4 | 叶凯, 刘香华, 姜月, 等. 低温等离子体协同CeO2/13X催化降解甲苯[J]. 化工学报, 2021, 72(7): 3706-3715. |
Ye K, Liu X H, Jiang Y, et al. Combing low-temperature plasma with CeO2/13X for toluene degradation[J]. CIESC Journal, 2021, 72(7): 3706-3715. | |
5 | Zhang G P, Chen D Y, Li N J, et al. Fabrication of Bi2MoO6/ZnO hierarchical heterostructures with enhanced visible-light photocatalytic activity[J]. Applied Catalysis B: Environmental, 2019, 250: 313-324. |
6 | Dai Q G, Bai S X, Wang J W, et al. The effect of TiO2 doping on catalytic performances of Ru/CeO2 catalysts during catalytic combustion of chlorobenzene[J]. Applied Catalysis B: Environmental, 2013, 142/143: 222-233. |
7 | Sun H, Yu X L, Yang X Q, et al. Au/rod-like MnO2 catalyst via thermal decomposition of manganite precursor for the catalytic oxidation of toluene[J]. Catalysis Today, 2019, 332: 153-159. |
8 | Topka P, Delaigle R, Kaluža L, et al. Performance of platinum and gold catalysts supported on ceria-zirconia mixed oxide in the oxidation of chlorobenzene[J]. Catalysis Today, 2015, 253: 172-177. |
9 | Xie S H, Deng J G, Zang S M, et al. Au-Pd/3DOM Co3O4: highly active and stable nanocatalysts for toluene oxidation[J]. Journal of Catalysis, 2015, 322: 38-48. |
10 | Zhou G L, Lan H, Wang H, et al. Catalytic combustion of PVOCs on MnO x catalysts[J]. Journal of Molecular Catalysis A: Chemical, 2014, 393: 279-288. |
11 | Pozan G S. Effect of support on the catalytic activity of manganese oxide catalyst for toluene combustion[J]. Journal of hazardous materials, 2012, 221/222(30): 124-130. |
12 | Yang Y, Zhang S, Wang S, et al. Ball milling synthesized MnO x as highly active catalyst for gaseous POPs removal: significance of mechanochemically induced oxygen vacancies[J]. Environmental Science & Technology, 2015, 49(7):4473-4480. |
13 | Wang F, Dai H, Deng J, et al. Manganese oxides with rod-, wire-, tube-, and flower-like morphologies: highly effective catalysts for the removal of toluene[J]. Environmental Science & Technology, 2012, 46(7):4034-4041. |
14 | Si W, Wang Y, Yue P, et al. A high-efficiency γ-MnO2-like catalyst in toluene combustion[J]. Chemical Communications, 2015, 51(81):14977-80. |
15 | Gu W X, Li C Q, Qiu J H, et al. Facile fabrication of flower-like MnO2 hollow microspheres as high-performance catalysts for toluene oxidation[J]. Journal of Hazardous Materials, 2021, 408: 124458. |
16 | Bai B Y, Li J H, Hao J M. 1D-MnO2, 2D-MnO2 and 3D-MnO2 for low-temperature oxidation of ethanol[J]. Applied Catalysis B: Environmental, 2015, 164: 241-250. |
17 | Wang Y, Guo L M, Chen M Q, et al. CoMn x O y nanosheets with molecular-scale homogeneity: an excellent catalyst for toluene combustion[J]. Catalysis Science & Technology, 2018, 8(2): 459-471. |
18 | Liang S H, Teng F, Bulgan G, et al. Effect of phase structure of MnO2 nanorod catalyst on the activity for CO oxidation[J]. The Journal of Physical Chemistry C, 2008, 112(14): 5307-5315. |
19 | Li Y Z, Fan Z Y, Shi J W, et al. Post plasma-catalysis for VOCs degradation over different phase structure MnO2 catalysts[J]. Chemical Engineering Journal, 2014, 241: 251-258. |
20 | Huang N, Qu Z P, Dong C, et al. Superior performance of α@β-MnO2 for the toluene oxidation: active interface and oxygen vacancy[J]. Applied Catalysis A: General, 2018, 560: 195-205. |
21 | Yang W H, Peng Y, Wang Y, et al. Controllable redox-induced in situ growth of MnO2 over Mn2O3 for toluene oxidation: active heterostructure interfaces[J]. Applied Catalysis B: Environmental, 2020, 278: 119279. |
22 | Zhao Q, Zheng Y, Song C, et al. Novel monolithic catalysts derived from in-situ decoration of Co3O4 and hierarchical Co3O4@MnO x on Ni foam for VOC oxidation [J]. Applied Catalysis B: Environmental, 2019, 265: 118552. |
23 | Luo Y J, Lin D F, Zheng Y B, et al. MnO2 nanoparticles encapsuled in spheres of Ce-Mn solid solution: efficient catalyst and good water tolerance for low-temperature toluene oxidation[J]. Applied Surface Science, 2020, 504: 144481. |
24 | 席康, 王勇, 谢晶, 等. 不同Pt前体制备Pt/CeO2催化剂对其结构及性能的影响[J]. 化工学报, 2019, 70(11): 4278-4288. |
Xi K, Wang Y, Xie J, et al. Effect of Pt precursor on structure and performance of Pt/CeO2 catalysts[J]. CIESC Journal, 2019, 70(11): 4278-4288. | |
25 | Tüysüz H, Lehmann C W, Bongard H, et al. Direct imaging of surface topology and pore system of ordered mesoporous silica (MCM-41, SBA-15, and KIT-6) and nanocast metal oxides by high resolution scanning electron microscopy[J]. Journal of the American Chemical Society, 2008, 130(34): 11510-11517. |
26 | Ma Y Y, Wang R F, Wang H, et al. Control of MnO2 nanocrystal shape from tremella to nanobelt for ehancement of the oxygen reduction reaction activity[J]. Journal of Power Sources, 2015, 280: 526-532. |
27 | Li L, Shi J W, Tian M J, et al. In situ fabrication of robust three dimensional ordered macroporous γ-MnO2/LaMnO3.15 catalyst for chlorobenzene efficient destruction[J]. Applied Catalysis B: Environmental, 2021, 282: 119565. |
28 | Ye Q, Zhao J S, Huo F F, et al. Nanosized Au supported on three-dimensionally ordered mesoporous β-MnO2: highly active catalysts for the low-temperature oxidation of carbon monoxide, benzene, and toluene[J]. Microporous and Mesoporous Materials, 2013, 172: 20-29. |
29 | Yang X Q, Yu X L, Lin M Y, et al. Enhancement effect of acid treatment on Mn2O3 catalyst for toluene oxidation[J]. Catalysis Today, 2019, 327: 254-261. |
30 | Chinnadurai D, Nallal M, Kim H J, et al. Mn3+ active surface site enriched manganese phosphate nano-polyhedrons for enhanced bifunctional oxygen electrocatalyst[J]. ChemCatChem, 2020, 12(8): 2348-2355. |
31 | Shi X, Zheng H, Kannan A M, et al. Effect of thermally induced oxygen vacancy of α-MnO2 nanorods toward oxygen reduction reaction[J]. Inorganic Chemistry, 2019, 58(8): 5335-5344. |
32 | Zheng Y P, Thampy S, Ashburn N, et al. Stable and active oxidation catalysis by cooperative lattice oxygen redox on SmMn2 O5 mullite surface[J]. Journal of the American Chemical Society, 2019, 141(27): 10722-10728. |
33 | Mo S P, Zhang Q, Sun Y H, et al. Gaseous CO and toluene co-oxidation over monolithic core-shell Co3O4-based hetero-structured catalysts[J]. Journal of Materials Chemistry A, 2019, 7(27): 16197-16210. |
34 | Liu Y, Zhou H, Cao R R, et al. Facile and green synthetic strategy of birnessite-type MnO2 with high efficiency for airborne benzene removal at low temperatures[J]. Applied Catalysis B: Environmental, 2019, 245: 569-582. |
35 | Huang Z Z, Wei Y H, Song Z X, et al. Three-dimensional (3D) hierarchical Mn2O3 catalysts with the highly efficient purification of benzene combustion[J]. Separation and Purification Technology, 2021, 255: 117633. |
36 | Chen J, Chen X, Chen X, et al. Homogeneous introduction of CeO y into MnO x -based catalyst for oxidation of aromatic VOCs [J]. Appl. Catal. B: Environ., 2018, 224: 825-835.. |
37 | Xie S H, Liu Y X, Deng J G, et al. Insights into the active sites of ordered mesoporous cobalt oxide catalysts for the total oxidation of o-xylene[J]. Journal of Catalysis, 2017, 352: 282-292. |
38 | Oyama S T, Zhang X M, Lu J Q, et al. Epoxidation of propylene with H2 and O2 in the explosive regime in a packed-bed catalytic membrane reactor[J]. Journal of Catalysis, 2008, 257(1): 1-4. |
39 | Wong C T, Abdullah A Z, Bhatia S. Catalytic oxidation of butyl acetate over silver-loaded zeolites[J]. Journal of Hazardous Materials, 2008, 157(2/3): 480-489. |
40 | Alifanti M, Florea M, Somacescu S, et al. Supported perovskites for total oxidation of toluene[J]. Applied Catalysis B: Environmental, 2005, 60(1/2): 33-39. |
[1] | 黄玉龙, 吕凡, 仇俊杰, 章骅, 何品晶. 易腐垃圾厌氧消化沼液理化性质及VOCs分子特征[J]. 化工学报, 2023, 74(3): 1275-1285. |
[2] | 贾亚宾, 郑旭, 高凯, 关军, 魏翩, 祁冰, 郑慧研. 某高校既有建筑室内人员相关VOCs目标污染物的实测分析[J]. 化工学报, 2020, 71(S1): 411-416. |
[3] | 唐铨, 郭杨龙, 詹望成, 郭耘, 王丽, 王筠松. 用于丙烷催化燃烧的PdxPty-ZSM-5/Cordierite整体式催化剂[J]. 化工学报, 2019, 70(3): 944-950. |
[4] | 赫帅, 郭凤, 康国俊, 余剑, 任雪峰, 许光文. 络合-溶剂热法制备钯基催化剂及其催化氧化间二甲苯性能[J]. 化工学报, 2019, 70(3): 937-943. |
[5] | 芮泽宝, 纪红兵. 有机废气催化燃烧过程中多尺度效应和催化剂设计[J]. 化工学报, 2018, 69(1): 317-326. |
[6] | 顾欧昀, 廖永涛, 陈锐杰, 贾璐, 龟山秀雄, 林益, 周吕, 马华, 郭燏. 铜锰复合氧化物催化剂上甲苯的催化燃烧[J]. 化工学报, 2016, 67(7): 2832-2840. |
[7] | 张莉, 邢耀华, 钟杰, 徐宏, 曹军. 1kW SOFC-CHP系统用催化燃烧耦合蒸汽重整反应器的实验研究[J]. 化工学报, 2016, 67(2): 557-562. |
[8] | 骆潮明, 李艳霞, 刘中良, 董予宛. 低浓度甲烷在微小燃烧器中的催化燃烧实验[J]. 化工学报, 2015, 66(S1): 216-221. |
[9] | 卢晗锋, 黄金星, 周瑛, 朱秋莲, 陈银飞. 沉淀剂对Cu-Mn-Ce复合氧化物催化剂结构和性能的影响[J]. 化工学报, 2015, 66(6): 2105-2111. |
[10] | 宋伟, 孔庆媛, 李洪枚. 木家具表面挥发性污染物散发传质特性[J]. 化工学报, 2013, 64(5): 1549-1560. |
[11] | 宋伟, 孔庆媛, 李洪枚. 建材VOC散发过程模拟与传质参数测定新方法[J]. 化工学报, 2013, 64(3): 912-923. |
[12] | 袁 庆,郑俊生,马建新. 基于氢气低温催化燃烧的燃料电池低温启动研究进展[J]. 化工进展, 2013, 32(06): 1439-1447. |
[13] | 潘红艳,张 煜,林 倩,杜 旭,阁世媚. 催化燃烧VOCs用非贵金属催化剂研究新进展 [J]. CIESC Journal, 2011, 30(8): 1726-. |
[14] | 周瑛,卢晗锋,刘灿,陈银飞. 结构型LaMnO3钙钛矿催化剂的催化燃烧活性和热稳定性 [J]. CIESC Journal, 2011, 62(7): 1885-1891. |
[15] | 余鸿敏, 卢晗锋, 陈银飞. Pt掺杂对Cu-Mn-Ce复合氧化物催化燃烧性能的影响 [J]. 化工学报, 2011, 62(4): 947-952. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 667
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 682
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||