化工学报 ›› 2022, Vol. 73 ›› Issue (8): 3608-3614.DOI: 10.11949/0438-1157.20220233
收稿日期:
2022-02-23
修回日期:
2022-07-22
出版日期:
2022-08-05
发布日期:
2022-09-06
通讯作者:
孙亚光
作者简介:
郭杰(1995—),男,硕士研究生,15735640496@163.com
基金资助:
Jie GUO(), Fan ZHANG, Shiyu XIE, Lixin YOU, Yaguang SUN()
Received:
2022-02-23
Revised:
2022-07-22
Online:
2022-08-05
Published:
2022-09-06
Contact:
Yaguang SUN
摘要:
以
中图分类号:
郭杰, 张帆, 谢世玉, 由立新, 孙亚光. 氮杂环卡宾-钯功能化的配位聚合物(NHC-Pd@Zn-L):合成、表征及催化Suzuki-Miyaura交叉偶联反应[J]. 化工学报, 2022, 73(8): 3608-3614.
Jie GUO, Fan ZHANG, Shiyu XIE, Lixin YOU, Yaguang SUN. NHC-Pd functionalized coordination polymer (NHC-Pd@Zn-L): synthesis, characterization and catalytic performance in Suzuki-Miyaura cross-coupling reaction[J]. CIESC Journal, 2022, 73(8): 3608-3614.
图5 NHC-Pd@Zn-L的XPS谱图(a);反应前后NHC-Pd@Zn-L中Pd的XPS谱图(b)
Fig.5 XPS spectrum of NHC-Pd@Zn-L (a); XPS spectra of Pd in NHC-Pd@Zn-L before and after reactions (b)
序号 | 溶剂 | 碱 | 时间/h | 催化剂/mg | 温度/℃ | 产率/% |
---|---|---|---|---|---|---|
1 | DMF | K2CO3 | 6 | 15 | 60 | 32 |
2 | toluene | K2CO3 | 6 | 15 | 60 | 21 |
3 | H2O | K2CO3 | 6 | 15 | 60 | 60 |
4 | EtOH | K2CO3 | 6 | 15 | 60 | >99 |
5 | EtOH | Cs2CO3 | 6 | 15 | 60 | 95 |
6 | EtOH | NaOH | 6 | 15 | 60 | 95 |
7 | EtOH | Et3N | 6 | 15 | 60 | 35 |
8 | EtOH | t-C4H9ONa | 6 | 15 | 60 | 44 |
9 | EtOH | K2CO3 | 6 | 10 | 60 | 95 |
10 | EtOH | K2CO3 | 6 | 15 | 80 | 93 |
11 | EtOH | K2CO3 | 2 | 15 | 60 | 90 |
12① | EtOH | K2CO3 | 6 | 15 | 60 | 99 |
13② | EtOH | K2CO3 | 6 | 15 | 60 | 84 |
表1 NHC-Pd@Zn-L催化溴苯与苯硼酸的Suzuki-Miyaura交叉偶联反应条件的优化
Table 1 Optimization of conditions for the Suzuki-Miyaura cross-coupling reaction of bromobenzene and phenylboronic acid catalyzed by NHC-Pd@Zn-L
序号 | 溶剂 | 碱 | 时间/h | 催化剂/mg | 温度/℃ | 产率/% |
---|---|---|---|---|---|---|
1 | DMF | K2CO3 | 6 | 15 | 60 | 32 |
2 | toluene | K2CO3 | 6 | 15 | 60 | 21 |
3 | H2O | K2CO3 | 6 | 15 | 60 | 60 |
4 | EtOH | K2CO3 | 6 | 15 | 60 | >99 |
5 | EtOH | Cs2CO3 | 6 | 15 | 60 | 95 |
6 | EtOH | NaOH | 6 | 15 | 60 | 95 |
7 | EtOH | Et3N | 6 | 15 | 60 | 35 |
8 | EtOH | t-C4H9ONa | 6 | 15 | 60 | 44 |
9 | EtOH | K2CO3 | 6 | 10 | 60 | 95 |
10 | EtOH | K2CO3 | 6 | 15 | 80 | 93 |
11 | EtOH | K2CO3 | 2 | 15 | 60 | 90 |
12① | EtOH | K2CO3 | 6 | 15 | 60 | 99 |
13② | EtOH | K2CO3 | 6 | 15 | 60 | 84 |
序号 | 芳基卤化物 | 芳基硼酸 | 产物 | 产率/ % |
---|---|---|---|---|
1 | Ph-Br | Ph-(OH)2 | Ph-Ph | >99 |
2 | Ph-I | Ph-(OH)2 | Ph-Ph | 99 |
3 | Ph-Br | p-CH3-Ph-(OH)2 | p-CH3-Ph-Ph | 98 |
4 | Ph-Br | p-CH3CO-Ph-(OH)2 | p-CH3CO-Ph-Ph | 95 |
5 | p-CH3CO-Ph-Cl | Ph-(OH)2 | p-CH3CO-Ph-Ph | 11 |
表2 NHC-Pd@Zn-L催化的芳基卤化物与芳基硼酸的Suzuki-Miyaura交叉偶联反应
Table 2 Suzuki-Miyaura cross-coupling reaction of aryl halides and arylboronic acids catalyzed by NHC-Pd@Zn-L
序号 | 芳基卤化物 | 芳基硼酸 | 产物 | 产率/ % |
---|---|---|---|---|
1 | Ph-Br | Ph-(OH)2 | Ph-Ph | >99 |
2 | Ph-I | Ph-(OH)2 | Ph-Ph | 99 |
3 | Ph-Br | p-CH3-Ph-(OH)2 | p-CH3-Ph-Ph | 98 |
4 | Ph-Br | p-CH3CO-Ph-(OH)2 | p-CH3CO-Ph-Ph | 95 |
5 | p-CH3CO-Ph-Cl | Ph-(OH)2 | p-CH3CO-Ph-Ph | 11 |
序号 | 催化剂 | 反应条件 | 产率/% | 文献 |
---|---|---|---|---|
1 | NHC-Pd@Zn-L | 60℃,6 h | >99 | 本文 |
2 | [SmPd2[L]2Cl4] n [H3O] n | 80℃, 6 h | 99 | [ |
3 | Pd@Eu-MOF | 80℃, 6 h | >99 | [ |
4 | Pd(0)@1a | 60℃,24 h | >99 | [ |
5 | Fe3O4@La-MOF-Schiff-Pd/Ni | 80℃, 6 h | 95 | [ |
6 | Pd@ZIF-92 | 80℃, 6 h | >99 | [ |
7 | MOF-253·0.05PdCl2 | 100℃, 8 h | 98 | [ |
8 | MOP-BPY(Pd) | 80℃, 12 h | 99 | [ |
9 | Pd NPs at NHC at ZIF-8 | 90℃, 0.25 h | 99 | [ |
10 | Pd-NHC-MIL-101(Cr) | 90℃, 0.17 h | 96 | [ |
11 | Pd-HoMOF | 100℃, 1 h | >99 | [ |
12 | Pd NCs | 75℃, 10 h | 96 | [ |
13 | m-6,6′-Me2bpy-MOF-Pd | 85℃, 12 h | 74 | [ |
14 | m-6,6′-Me2bpy-MOF-PdCl2 | 85℃, 12 h | 99 | [ |
15 | UiO-66-Pyta-Pd | 80℃, 2 h | 80 | [ |
表3 NHC-Pd@Zn-L与其他Pd负载配位聚合物在芳基卤苯与苯硼酸反应中最优催化活性的比较
Table 3 Comparison of the optimal catalytic activities of NHC-Pd@Zn-L and other Pd-supported coordination polymers in the reaction of aryl halobenzene with phenylboronic acid
序号 | 催化剂 | 反应条件 | 产率/% | 文献 |
---|---|---|---|---|
1 | NHC-Pd@Zn-L | 60℃,6 h | >99 | 本文 |
2 | [SmPd2[L]2Cl4] n [H3O] n | 80℃, 6 h | 99 | [ |
3 | Pd@Eu-MOF | 80℃, 6 h | >99 | [ |
4 | Pd(0)@1a | 60℃,24 h | >99 | [ |
5 | Fe3O4@La-MOF-Schiff-Pd/Ni | 80℃, 6 h | 95 | [ |
6 | Pd@ZIF-92 | 80℃, 6 h | >99 | [ |
7 | MOF-253·0.05PdCl2 | 100℃, 8 h | 98 | [ |
8 | MOP-BPY(Pd) | 80℃, 12 h | 99 | [ |
9 | Pd NPs at NHC at ZIF-8 | 90℃, 0.25 h | 99 | [ |
10 | Pd-NHC-MIL-101(Cr) | 90℃, 0.17 h | 96 | [ |
11 | Pd-HoMOF | 100℃, 1 h | >99 | [ |
12 | Pd NCs | 75℃, 10 h | 96 | [ |
13 | m-6,6′-Me2bpy-MOF-Pd | 85℃, 12 h | 74 | [ |
14 | m-6,6′-Me2bpy-MOF-PdCl2 | 85℃, 12 h | 99 | [ |
15 | UiO-66-Pyta-Pd | 80℃, 2 h | 80 | [ |
1 | Niwa T, Uetake Y, Isoda M, et al. Lewis acid-mediated Suzuki-Miyaura cross-coupling reaction[J]. Nature Catalysis, 2021, 4(12): 1080-1088. |
2 | Miyaura N, Suzuki A. Palladium-catalyzed cross-coupling reactions of organoboron compounds[J]. Chemical Reviews, 1995, 95(7): 2457-2483. |
3 | Miyaura N, Yamada K, Suzuki A. A new stereospecific cross-coupling by the palladium-catalyzed reaction of 1-alkenylboranes with 1-alkenyl or 1-alkynyl halides[J]. Tetrahedron Letters, 1979, 20(36): 3437-3440. |
4 | Yin L X, Liebscher J. Carbon-carbon coupling reactions catalyzed by heterogeneous palladium catalysts[J]. Chemical Reviews, 2007, 107(1): 133-173. |
5 | 高婷婷, 姬广斌. Pd/CMK-3的合成及其在Suzuki-Miyaura碳-碳偶联反应中的应用[J]. 化工学报, 2011, 62(2): 515-519. |
Gao T T, Ji G B. Synthesis of Pd/CMK-3 and its application in Suzuki-Miyaura carbon-carbon coupling reaction[J]. CIESC Journal, 2011, 62(2): 515-519. | |
6 | Elayappan V, Shinde P A, Veerasubramani G K, et al. Metal-organic-framework-derived hierarchical Co/CoP-decorated nanoporous carbon polyhedra for robust high-energy storage hybrid supercapacitors[J]. Dalton Transactions, 2020, 49(4): 1157-1166. |
7 | Jiang Y, Tan P, Qi S C, et al. Cover picture: metal-organic frameworks with target-specific active sites switched by photoresponsive motifs: efficient adsorbents for tailorable CO2 capture [J]. Angewandte Chemie International Edition, 2019, 58(20): 6457. |
8 | You L X, Cui L X, Zhao B B, et al. Tailoring the structure, pH sensitivity and catalytic performance in Suzuki-Miyaura cross-couplings of Ln/Pd MOFs based on the 1,1'-di(p-carboxybenzyl)-2,2'-diimidazole linker[J]. Dalton Transactions, 2018, 47(26): 8755-8763. |
9 | You L X, Liu H J, Cui L X, et al. The synergistic effect of cobalt on a Pd/Co catalyzed Suzuki-Miyaura cross-coupling in water[J]. Dalton Transactions, 2016, 45(46): 18455-18458. |
10 | Cohen S M. Postsynthetic methods for the functionalization of metal-organic frameworks[J]. Chemical Reviews, 2012, 112(2): 970-1000. |
11 | You L X, Yao S X, Zhao B B, et al. Striking dual functionality of a novel Pd@Eu-MOF nanocatalyst in C(sp2)-C(sp2) bond-forming and CO2 fixation reactions[J]. Dalton Transactions, 2020, 49(19): 6368-6376. |
12 | Adalikwu S A, Mothika V S, Hazra A, et al. Polar functional groups anchored to a 2D MOF template for the stabilization of Pd(0) nps for the catalytic C-C coupling reaction[J]. Dalton Transactions, 2019, 48(21): 7117-7121. |
13 | 由立新, 赵柏蓓, 陈小玲, 等. 双金属异相催化剂Fe3O4@La-MOF-Schiff-Pd/Ni的制备及其催化Suzuki偶联反应[J]. 精细化工, 2018, 35(11): 1974-1980. |
You L X, Zhao B B, Chen X L, et al. Preparation and catalytic performance in Suzuki coupling reaction of bimetal heterogeneous catalyst (Fe3O4@La-MOF-Schiff-Pd/Ni)[J]. Fine Chemicals, 2018, 35(11): 1974-1980. | |
14 | Ezugwu C I, Mousavi B, Asraf M A, et al. Post-synthetic modified MOF for Sonogashira cross-coupling and Knoevenagel condensation reactions[J]. Journal of Catalysis, 2016, 344: 445-454. |
15 | Hopkinson M N, Richter C, Schedler M, et al. An overview of N-heterocyclic carbenes[J]. Nature, 2014, 510(7506): 485-496. |
16 | Ortiz A, Gómez-Sal P, Flores J C, et al. Highly recoverable Pd(Ⅱ) catalysts for the Mizoroki-Heck reaction based on N‑heterocyclic carbenes and poly(benzyl ether) dendrons[J]. Organometallics, 2018, 37(20): 3598-3610. |
17 | Ma M T, Lu J M. Dinuclear Pd(Ⅱ)-NHC complex derived from proline and its application toward Mizoroki-Heck reaction performed in water[J]. Applied Organometallic Chemistry, 2012, 26(4): 175-179. |
18 | Thinnes C C, Lohans C T, Abboud M I, et al. Selective inhibitors of a human prolyl hydroxylase (OGFOD1) involved in ribosomal decoding[J]. Chemistry - A European Journal, 2019, 25(8): 2019-2024. |
19 | Li G, Yang H Q, Li W, et al. Rationally designed palladium complexes on a bulky N-heterocyclic carbene-functionalized organosilica: an efficient solid catalyst for the Suzuki-Miyaura coupling of challenging aryl chlorides[J]. Green Chemistry, 2011, 13(10): 2939. |
20 | Reshi N U D, Bera J K. Recent advances in annellated NHCs and their metal complexes[J]. Coordination Chemistry Reviews, 2020, 422: 213334. |
21 | Lim J, Lee S, Ha H, et al. Cover picture: amine-tagged fragmented ligand installation for covalent modification of MOF-74[J]. Angewandte Chemie International Edition, 2021, 60(17): 9145. |
22 | You L X, Zhao B B, Yao S X, et al. Engineering functional group decorated ZIFs to high-performance Pd@ZIF-92 nanocatalysts for C(sp2)-C(sp2) couplings in aqueous medium[J]. Journal of Catalysis, 2020, 392: 80-87. |
23 | Chen L Y, Gao Z Q, Li Y W. Immobilization of Pd(Ⅱ) on MOFs as a highly active heterogeneous catalyst for Suzuki-Miyaura and Ullmann-type coupling reactions[J]. Catalysis Today, 2015, 245: 122-128. |
24 | Wei Y L, Li Y, Chen Y Q, et al. Pd(Ⅱ)-NHDC-functionalized UiO-67 type MOF for catalyzing Heck cross-coupling and intermolecular benzyne-benzyne-alkene insertion reactions[J]. Inorganic Chemistry, 2018, 57(8): 4379-4386. |
25 | Babu C N, Sathyanarayana A, Mobin S M, et al. Structurally characterized zwitterionic chiral zinc imidazolium[4, 4] grid[J]. Inorganic Chemistry Communications, 2013, 37: 222-224. |
26 | Huang J P, Wang W, Li H X. Water-medium organic reactions catalyzed by active and reusable Pd/Y heterobimetal-organic framework[J]. ACS Catalysis, 2013, 3(7): 1526-1536. |
27 | Xu S J, Song K P, Li T, et al. Palladium catalyst coordinated in knitting N-heterocyclic carbene porous polymers for efficient Suzuki-Miyaura coupling reactions[J]. Journal of Materials Chemistry A, 2015, 3(3): 1272-1278. |
28 | Liu G, Hou M, Wu T, et al. Pd(Ⅱ) immobilized on mesoporous silica by N-heterocyclic carbene ionic liquids and catalysis for hydrogenation[J]. Physical Chemistry Chemical Physics, 2011, 13(6): 2062-2068. |
29 | Zhang D X, Liu J, Zhang H X, et al. A rational strategy to construct a neutral boron imidazolate framework with encapsulated small-size Au-Pd nanoparticles for catalysis[J]. Inorganic Chemistry, 2015, 54(13): 6069-6071. |
30 | Hens A, Rajak K K. Photophysical property vs. medium: mononuclear, dinuclear and trinuclear Zn(Ⅱ) complexes[J]. RSC Advances, 2015, 5(6): 4219-4232. |
31 | Kim S, Jee S, Choi K M, et al. Single-atom Pd catalyst anchored on Zr-based metal-organic polyhedra for Suzuki-Miyaura cross coupling reactions in aqueous media[J]. Nano Research, 2021, 14(2): 486-492. |
32 | Azad M, Rostamizadeh S, Nouri F, et al. Pd nanoparticles at N-heterocyclic carbene at ZIF-8 as an ultrafine, robust and sustainable heterogeneous system for Suzuki-Miyaura cross coupling processes[J]. Materials Letters, 2019, 236: 757-760. |
33 | Niknam E, Panahi F, Khalafi-Nezhad A. Immobilized Pd on a NHC functionalized metal-organic framework MIL-101(Cr): an efficient heterogeneous catalyst in Suzuki-Miyaura coupling reaction in water[J]. Applied Organometallic Chemistry, 2020, 34(4): e5470. |
34 | Dong D P, Li Z H, Liu D D, et al. Postsynthetic modification of single Pd sites into uncoordinated polypyridine groups of a MOF as the highly efficient catalyst for Heck and Suzuki reactions[J]. New Journal of Chemistry, 2018, 42(11): 9317-9323. |
35 | Li X L, Goh T W, Xiao C X, et al. Synthesis of monodisperse palladium nanoclusters using metal-organic frameworks as sacrificial templates[J]. ChemNanoMat, 2016, 2(8): 810-815. |
36 | Li X L, Zhang B Y, Zeeland R, et al. Unveiling the effects of linker substitution in Suzuki coupling with palladium nanoparticles in metal-organic frameworks[J]. Catalysis Letters, 2018, 148(3): 940-945. |
37 | Li X L, Van Zeeland R, Maligal-Ganesh R V, et al. Impact of linker engineering on the catalytic activity of metal-organic frameworks containing Pd(Ⅱ)-bipyridine complexes[J]. ACS Catalysis, 2016, 6(9): 6324-6328. |
38 | Daliran S, Ghazagh-Miri M, Oveisi A R, et al. A pyridyltriazol functionalized zirconium metal-organic framework for selective and highly efficient adsorption of palladium[J]. ACS Applied Materials & Interfaces, 2020, 12(22): 25221-25232. |
[1] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[2] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[3] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[4] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[5] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[6] | 吴雷, 刘姣, 李长聪, 周军, 叶干, 刘田田, 朱瑞玉, 张秋利, 宋永辉. 低阶粉煤催化微波热解制备含碳纳米管的高附加值改性兰炭末[J]. 化工学报, 2023, 74(9): 3956-3967. |
[7] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[8] | 李凯旋, 谭伟, 张曼玉, 徐志豪, 王旭裕, 纪红兵. 富含零价钴活性位点的钴氮碳/活性炭设计及甲醛催化氧化应用研究[J]. 化工学报, 2023, 74(8): 3342-3352. |
[9] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[10] | 陈雅鑫, 袁航, 刘冠章, 毛磊, 杨纯, 张瑞芳, 张光亚. 蛋白质纳米笼介导的酶自固定化研究进展[J]. 化工学报, 2023, 74(7): 2773-2782. |
[11] | 汤晓玲, 王嘉瑞, 朱玄烨, 郑仁朝. 基于Pickering乳液的卤醇脱卤酶催化合成手性环氧氯丙烷[J]. 化工学报, 2023, 74(7): 2926-2934. |
[12] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[13] | 涂玉明, 邵高燕, 陈健杰, 刘凤, 田世超, 周智勇, 任钟旗. 钙基催化剂的设计合成及应用研究进展[J]. 化工学报, 2023, 74(7): 2717-2734. |
[14] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[15] | 李盼, 马俊洋, 陈志豪, 王丽, 郭耘. Ru/α-MnO2催化剂形貌对NH3-SCO反应性能的影响[J]. 化工学报, 2023, 74(7): 2908-2918. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||