化工学报 ›› 2022, Vol. 73 ›› Issue (10): 4576-4584.DOI: 10.11949/0438-1157.20220845
收稿日期:
2022-06-15
修回日期:
2022-07-11
出版日期:
2022-10-05
发布日期:
2022-11-02
通讯作者:
孟祥铠
作者简介:
孟祥铠(1980—),男,博士,教授,mengxk@zjut.edu.cn
基金资助:
Xiangkai MENG(), Lingchao MENG, Yi MA, Jinbo JIANG, Xudong PENG
Received:
2022-06-15
Revised:
2022-07-11
Online:
2022-10-05
Published:
2022-11-02
Contact:
Xiangkai MENG
摘要:
考虑多孔质材料内密封介质渗流与密封端面润滑液膜间的传质耦合关系,建立了一种多孔质机械密封的流体润滑模型,采用有限单元法求解液膜润滑方程和多孔质内部渗流控制方程,研究了膜厚、渗透率、多孔质环几何参数对密封性能的影响规律,揭示了多孔质机械密封的工作机理。结果表明:多孔质机械密封依靠流体静压效应在密封端面成膜,相较于普通平行端面密封,其液膜承载力和轴向刚度更大;随多孔质渗透率的增大,多孔质机械密封泄漏率和开启力逐渐增大,而液膜刚度逐渐减小;液膜厚度的增大会导致泄漏率的增大和开启力的减小,而液膜刚度先增大后减小,且不同渗透率下的最大刚度分别对应不同的膜厚值。研究结果可为多孔质机械密封的工程设计提供新的思路和理论指导。
中图分类号:
孟祥铠, 孟令超, 马艺, 江锦波, 彭旭东. 多孔质机械密封耦合润滑模型与密封性能分析[J]. 化工学报, 2022, 73(10): 4576-4584.
Xiangkai MENG, Lingchao MENG, Yi MA, Jinbo JIANG, Xudong PENG. Coupling lubrication model of porous mechanical seal and seal performance analysis[J]. CIESC Journal, 2022, 73(10): 4576-4584.
Parameter | Value |
---|---|
inner radius, ri/mm | 34.0 |
outer radius, ro/mm | 40.0 |
inner radius of porous material, rp/mm | 34.5~39.5 |
thickness of porous material, hp/mm | 1.0~9.0 |
width of porous material, b/mm | 0.5~5.5 |
film thickness, h/μm | 0.5~4.5 |
permeability, k/m2 | 1×10-15~1×10-12 |
dynamic viscosity, μ/(Pa∙s) | 2.2818×10-4 |
outer pressure, ps/MPa | 0.50 |
inner pressure, pa/MPa | 0.10 |
表1 计算参数
Table 1 Calculation parameters
Parameter | Value |
---|---|
inner radius, ri/mm | 34.0 |
outer radius, ro/mm | 40.0 |
inner radius of porous material, rp/mm | 34.5~39.5 |
thickness of porous material, hp/mm | 1.0~9.0 |
width of porous material, b/mm | 0.5~5.5 |
film thickness, h/μm | 0.5~4.5 |
permeability, k/m2 | 1×10-15~1×10-12 |
dynamic viscosity, μ/(Pa∙s) | 2.2818×10-4 |
outer pressure, ps/MPa | 0.50 |
inner pressure, pa/MPa | 0.10 |
1 | 王乐勤, 孟祥铠, 戴维平, 等. 接触式机械密封流固耦合模型及性能分析[J]. 工程热物理学报, 2008, 29(11): 1864-1866. |
Wang L Q, Meng X K, Dai W P, et al. Analysis on sealing performance and fluid-solid coupling model of contacting mechanical seals[J]. Journal of Engineering Thermophysics, 2008, 29(11): 1864-1866. | |
2 | 魏龙, 顾伯勤, 刘其和, 等. 接触式机械密封端面平均温度耦合计算方法[J]. 化工学报, 2014, 65(9): 3568-3575. |
Wei L, Gu B Q, Liu Q H, et al. Average temperature coupling calculation method for end faces of contact mechanical seals[J]. CIESC Journal, 2014, 65(9): 3568-3575. | |
3 | 孙见君, 陈国旗, 嵇正波, 等. 接触式机械密封界面泄漏机理分析[J]. 化工学报, 2018, 69(4): 1528-1536. |
Sun J J, Chen G Q, Ji Z B, et al. Analysis on leakage mechanism for contacting mechanical seal interface[J]. CIESC Journal, 2018, 69(4): 1528-1536. | |
4 | 孟祥铠, 江莹莹, 赵文静, 等. 螺旋槽液膜密封热流体动力润滑性能分析[J]. 化工学报, 2019, 70(4): 1512-1521. |
Meng X K, Jiang Y Y, Zhao W J, et al. Analysis of thermohydrodynamic lubrication performance of spiral-grooved liquid film seals[J]. CIESC Journal, 2019, 70(4): 1512-1521. | |
5 | Zhang G Y, Zhao Y Y, Zhao W G, et al. An experimental study on the cryogenic face seal at different inlet pressures[J]. Proceedings of the Institution of Mechanical Engineers(Part J): Journal of Engineering Tribology, 2020, 234(9): 1470-1481. |
6 | Etsion I, Kligerman Y, Halperin G. Analytical and experimental investigation of laser-textured mechanical seal faces[J]. Tribology Transactions, 1999, 42(3): 511-516. |
7 | Etsion I. State of the art in laser surface texturing[J]. Journal of Tribology, 2005, 127(1): 248-253. |
8 | Meng X K, Bai S X, Peng X D. Lubrication film flow control by oriented dimples for liquid lubricated mechanical seals[J]. Tribology International, 2014, 77: 132-141. |
9 | Yang X, Peng X D, Meng X K, et al. Thermo-elasto-hydrodynamic analysis of triangular textured mechanical face seals[J]. Journal of Zhejiang University-Science A, 2019, 20(11): 864-881. |
10 | 赵中, 彭旭东, 盛颂恩, 等. 多孔扇形分布端面机械密封性能的数值分析[J]. 化工学报, 2009, 60(4): 965-971. |
Zhao Z, Peng X D, Sheng S E, et al. Numerical analysis of laser textured mechanical seals with a porous sector face[J]. CIESC Journal, 2009, 60(4): 965-971. | |
11 | 彭旭东, 刘鑫, 孟祥铠, 等. 锥面-微孔组合端面机械密封性能[J]. 化工学报, 2011, 62(12): 3463-3470. |
Peng X D, Liu X, Meng X K, et al. Performance of mechanical face seals with both surface micropores and convergent coning[J]. CIESC Journal, 2011, 62(12): 3463-3470. | |
12 | 杜金名, 卢泽生, 孙雅洲. 影响空气静压多孔质轴承静态性能的有关因素[J]. 中国机械工程, 2003, 14(5): 417-419. |
Du J M, Lu Z S, Sun Y Z. Relative factors affecting static performance of aerostatic porous bearings[J]. China Mechanical Engineering, 2003, 14(5): 417-419. | |
13 | Luong T S, Potze W, Post J B, et al. Numerical and experimental analysis of aerostatic thrust bearings with porous restrictors[J]. Tribology International, 2004, 37(10): 825-832. |
14 | 赵阳升. 多孔介质多场耦合作用及其工程响应[M]. 北京: 科学出版社, 2010. |
Zhao Y S. Multi-field Coupling and Engineering Response in Porous Media[M]. Beijing: Science Press, 2010. | |
15 | Lee C C, You H I. Characteristics of externally pressurized porous gas bearings considering structure permeability[J]. Tribology Transactions, 2009, 52(6): 768-776. |
16 | Lee C C, You H I. Geometrical design considerations on externally pressurized porous gas bearings[J]. Tribology Transactions, 2010, 53(3): 386-391. |
17 | 吴定柱, 陶继忠. 多孔质石墨气体静压止推轴承静态性能分析[J]. 中国机械工程, 2010, 21(19): 2296-2301. |
Wu D Z, Tao J Z. Analysis of static performance of porous graphite aerostatic thrust bearings[J]. China Mechanical Engineering, 2010, 21(19): 2296-2301. | |
18 | 康磊, 张肖男, 娄建军, 等. 多孔介质气体润滑轴承气热耦合研究[J]. 热能动力工程, 2020, 35(3): 158-166. |
Kang L, Zhang X N, Lou J J, et al. Conjugate heat transfer study on porous media gas lubricated bearing[J]. Journal of Engineering for Thermal Energy and Power, 2020, 35(3): 158-166. | |
19 | Hanawa N, Kuniyoshi M, Miyatake M, et al. Static characteristics of a water-lubricated hydrostatic thrust bearing with a porous land region and a capillary restrictor[J]. Precision Engineering, 2017, 50: 293-307. |
20 | 张国涛, 尹延国, 李蓉蓉, 等. 孔隙渗流对环面复层含油轴承润滑性能的影响[J]. 摩擦学学报, 2019, 39(2): 228-234. |
Zhang G T, Yin Y G, Li R R, et al. Effect of porous seepage on lubrication performance of circular-face bilayer oil bearing[J]. Tribology, 2019, 39(2): 228-234. | |
21 | 张国涛, 尹延国. 复层孔隙分布含油轴承的孔道渗流及润滑机制[J]. 中国科学: 技术科学, 2019, 49(8): 961-970. |
Zhang G T, Yin Y G. Seepage flow and lubrication mechanism of oil-bearing with bilayer pore distribution[J]. Scientia Sinica (Technologica), 2019, 49(8): 961-970. | |
22 | Etsion I, Michael O. Enhancing sealing and dynamic performance with partially porous mechanical face seals[J]. Tribology Transactions, 1994, 37(4): 701-710. |
23 | Kaneko S. Application of porous materials to annular plain seals(Ⅰ): Static characteristics[J]. Journal of Tribology, 1989, 111(4): 655-660. |
24 | Kaneko S. Application of porous materials to annular plain seals(Ⅱ): Dynamic characteristics[J]. Journal of Tribology, 1990, 112(4): 624-630. |
25 | Kaneko S, Kamei H, Yanagisawa Y, et al. Experimental study on static and dynamic characteristics of annular plain seals with porous materials[J]. Journal of Tribology, 1998, 120(2): 165-172. |
26 | 张国涛, 童宝宏, 尹延国, 等. 环面接触复层多孔轴承热流体动压润滑性能及生/传热机制分析[J]. 机械工程学报, 2019, 55(21): 98-107. |
Zhang G T, Tong B H, Yin Y G, et al. Analysis of thermo-hydrodynamic lubrication performance and heat generating/transfer mechanism of ring-face contact bilayer oil bearing[J]. Journal of Mechanical Engineering, 2019, 55(21): 98-107. | |
27 | Zhang G T, Tong B H, Yin Y G. Temperature distribution and heat generating/transfer mechanism of the circular bilayer porous bearing for thermo-hydrodynamic problem[J]. International Journal of Heat and Mass Transfer, 2020, 149: 119134. |
28 | Eidelberg B E, Booker J F. Application of finite element methods to lubrication: squeeze films between porous surfaces[J]. Journal of Lubrication Technology, 1976, 98(1): 175-179. |
29 | Booker J F, Huebner K H. Application of finite element methods to lubrication: an engineering approach[J]. Journal of Lubrication Technology, 1972, 94(4): 313-323. |
30 | Nishitani Y, Yoshimoto S, Somaya K. Numerical investigation of static and dynamic characteristics of water hydrostatic porous thrust bearings[J]. International Journal of Automation Technology, 2011, 5(6): 773-779. |
31 | 彭旭东, 刘伟, 白少先, 等. 热弹变形对核主泵用流体静压型机械密封性能的影响[J]. 机械工程学报, 2010, 46(23): 146-153. |
Peng X D, Liu W, Bai S X, et al. Effects analysis of thermo-elastic deformation on the performance of hydrostatic mechanical seals in reactor coolant pumps[J]. Journal of Mechanical Engineering, 2010, 46(23): 146-153. |
[1] | 赵文静, 屠治荣, 孟祥铠, 江锦波, 彭旭东. 非规则V形表面织构化机械端面密封性能研究[J]. 化工学报, 2022, 73(10): 4585-4593. |
[2] | 张友亮, 程香平, 韦江, 康林萍, 付远. 微椭圆孔轴面织构油封密封性能仿真模拟及机理探究[J]. 化工学报, 2019, 70(7): 2660-2667. |
[3] | 杨文静, 郝木明, 曹恒超, 袁俊马, 李晗. 基于质量守恒边界条件的下游泵送螺旋槽液膜密封空化分析[J]. 化工学报, 2018, 69(9): 3932-3943. |
[4] | 李玮, 刘芳, 陈宝明, 魏茂丰, 郜凯凯, 耿文广. 寒冷地区湿传递对多层墙体热湿性能的影响[J]. 化工学报, 2017, 68(S1): 162-168. |
[5] | 曹恒超, 郝木明, 李振涛, 杨文静, 汪艳红, 袁俊马. 基于相变效应的内压型螺旋槽液膜密封性能分析[J]. 化工学报, 2017, 68(9): 3532-3540. |
[6] | 曹恒超, 郝木明, 李振涛, 杨文静, 孙震, 汪艳红, 任付军. 相变对螺旋槽液膜密封性能的影响[J]. 化工学报, 2017, 68(8): 3190-3201. |
[7] | 杨文静, 郝木明, 李振涛, 任宝杰, 曹恒超, 张伟. 考虑锥度及波度的螺旋槽液膜密封动态特性分析[J]. 化工学报, 2016, 67(12): 5199-5207. |
[8] | 励行根, 沈明学, 王成林, 魏世军, 励洁, 彭旭东. 柔性石墨金属波纹复合增强垫片密封性能试验[J]. 化工学报, 2015, 66(4): 1417-1424. |
[9] | 金朝旭, 李双喜, 蔡纪宁, 张秋翔. 可调控型气膜润滑密封静压结构参数优化[J]. 化工学报, 2015, 66(4): 1425-1433. |
[10] | 程香平, 孟祥铠, 彭旭东. 大菱形孔端面密封力变形及密封性能分析[J]. 化工学报, 2014, 65(8): 3089-3097. |
[11] | 佘宝瑛, 彭旭东, 孟祥铠, 李纪云. 不同形状方向性型孔液体润滑端面密封性能对比[J]. 化工学报, 2014, 65(6): 2202-2210. |
[12] | 石宪章, 黄明, 赵振峰, 申长雨, 田中. 气辅成型过程中可压缩空气流动数值模拟[J]. 化工学报, 2013, 64(3): 906-911. |
[13] | 彭旭东,张岳林,白少先,李纪云,盛颂恩. 转速压力对T型槽干气密封槽型几何结构参数优选值的影响[J]. 化工学报, 2012, 63(2): 551-559. |
[14] | 吕事桂, 杨立, 范春利. 基于有限元离散的不规则管道几何边界红外瞬态检测识别[J]. 化工学报, 2012, 63(12): 3805-3811. |
[15] | 吉彦鹏, 马挺, 曾敏, 王秋旺. 对流换热条件下内外翅片管应力分析 [J]. 化工学报, 2011, 62(S1): 86-91. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||