化工学报 ›› 2017, Vol. 68 ›› Issue (S1): 162-168.doi: 10.11949/j.issn.0438-1157.20170558

• 流体力学与传递现象 • 上一篇    下一篇

寒冷地区湿传递对多层墙体热湿性能的影响

李玮1, 刘芳1,2,3, 陈宝明1,2,3, 魏茂丰1, 郜凯凯1, 耿文广4   

  1. 1. 山东建筑大学热能工程学院, 山东 济南 250101;
    2. 可再生能源建筑利用技术省部共建教育部重点实验室, 山东 济南 250101;
    3. 山东省可再生能源建筑应用技术重点实验室, 山东 济南 250101;
    4. 山东省科学院能源研究所, 山东 济南 250101
  • 收稿日期:2017-05-04 修回日期:2017-05-10 出版日期:2017-08-31 发布日期:2017-08-31
  • 通讯作者: 刘芳,fliu@sdjzu.edu.cn E-mail:fliu@sdjzu.edu.cn
  • 基金资助:

    国家自然科学基金项目(51406105);国家重点研发计划项目(2016YFB0601302)。

Moisture transfer effects on thermo-hydro properties of multilayer wall in cold area

LI Wei1, LIU Fang1,2,3, CHEN Baoming1,2,3, WEI Maofeng1, GAO Kaikai1, GENG Wenguang4   

  1. 1. School of Thermal Energy Engineering, Shandong Jianzhu University, Jinan 250101, Shandong, China;
    2. Key Laboratory of Renewable Energy Utilization Technologies in Building, Ministry of Education, Shandong Jianzhu University, Jinan 250101, Shandong, China;
    3. Shandong Key Laboratory of Renewable Energy Application Technology, Shandong Jianzhu University, Jinan 250101, Shandong, China;
    4. Energy Research Institute of Shandong Academy Science, Jinan 250101, Shandong, China
  • Received:2017-05-04 Revised:2017-05-10 Published:2017-08-31 Online:2017-08-31
  • Supported by:

    supported by the National Natural Science Foundation of China (51406105) and the National Key R&D Plan(2016YFB0601302).

摘要:

墙体的传热传湿对建筑围护结构的热工性能、建筑能耗和室内环境有十分重要的影响。以相对湿度和温度为驱动势建立多层墙体一维非稳态热、湿和空气耦合传递模型(HAM模型),并利用有限元法进行数值求解,重点关注湿传递对传热的影响机理。结果表明:考虑传湿时墙体交界面处湿度梯度大,相变速率大;墙体内部会产生湿积累,缩短墙体的使用年限;墙体内部温度上升幅度和上升速率大,墙体交界面处局部Nusselt数变化受湿传递的影响大;相变潜热量占总传热量的26.1%,计算空调负荷时不可忽略。

关键词: 多孔介质, 两相流, 传递过程, 寒冷地区, 多层墙体, HAM模型, 热湿性能, 有限元法

Abstract:

The heat and moisture transfer through wall has an important impact on the hygrothermal performance of building envelope,energy consumption and indoor environment. One-dimensional unsteady heat,wet and air coupled transfer (HAM) model of the multilayer wall is founded,with relative humidity and temperature being the driving force in this paper. And the finite element method is used to solve the numerical model. The numerical results show that considering the moisture transfer,the humidity gradient and the rate of mass change due to phase change is high near the internal and exterior surface; moisture would be accumulated in wall,which shorten the service life of the wall; the range of temperature rise is large and the rise rate is high,moisture transfer have great effect on the average Nu of the wall; the heat storage is 1.6 times as much as that of ignoring moisture transfer,and it is not conducive to the building energy efficiency of air conditioning buildings when the calculation is ignoring moisture transfer.

Key words: porous media, two-phase flow, transport processes, cold area, multilayer wall, heat air and moisture model, thermo-hydro properties, finite element method

中图分类号: 

  • TK121
[1] 王蕾,魏后凯. 中国城镇化对能源消费影响的实证研究[J]. 资源科学,2014,36(6):1235-1243. WANG L,WEI H K. The impacts of Chinese urbanization on energy consumption[J]. Resources Science,2014,36(6):1235-1243.
[2] 李兆坚,江亿. 我国广义建筑能耗状况的分析与思考[J]. 建筑学报,2006,(7):30-33. LI Z J,JIANG Y. Analysis and thinking on energy consumption of generalized buildings in China[J]. Architectural Journal,2006,(7):30-33.
[3] 曾超. 重庆地区墙体蓄热特性等级划分及其影响因素研究[D].重庆:重庆大学,2015. ZENG C. Wall heat storage performance hierarchy and study of influential factors in Chongqing[D]. Chongqing:Chongqing University,2015.
[4] 李延俊. 西北地区乡村住宅采暖模式研究[D]. 西安:西安建筑科技大学,2014. LI Y J. Study on heating pattern of rural residences in northwest China[D]. Xi'an:Xi'an University of Architecture and Technology,2014
[5] 王莹莹,刘艳峰,刘加平. 多孔围护结构热湿耦合传递过程研究及进展[J]. 建筑科学,2011,27(6):106-112. WANG Y Y,LIU Y F,LIU J P. Review of coupled heat and moisture transfer process in porous building envelope[J].Building Science,2011,27(6):106-112.
[6] 郎四维,林海燕,涂逢祥,等. GB 50189-2005公共建筑节能设计标准[S]. 北京:中国建筑工业出版社,2005. LANG S W,LIN H Y,TU F X,et al. GB 50189-2005 Design standard for energy efficiency of public buildings[S]. Beijing:China Architecture & Building Press,2005.
[7] LIU Y, WANG Y, WANG D, et al. Effect of moisture transfer on internal surface temperature[J]. Energy and Buildings,2013,60(6):83-91.
[8] FITSUM T,KUMAR K,PAUL F.Integrated analysis of whole building heat,air and moisture transfer[J]. International Journal of Heat and Mass Transfer,2010,53(15/16):3111-3120.
[9] MENGHAO Q,ABDELKARIM A,RAFIK B. Two-dimensional hygrothermal transfer in porous building materials[J]. Applied Thermal Engineering,2010,30(16):2555-2562.
[10] JELLE L,ANDREAS N,RALF K,et al. A quasi-steady state implementation of air convection in a transient heat and moisture building component model[J]. Building and Environment,2012,58:208-218.
[11] TADIWOS Z D,JELLE L,STAF R. Experimental data set for validation of heat,air and moisture transport models of building envelopes[J]. Building and Environment,2011,46(5):1038-1046.
[12] 张在喜. 墙体蓄放热特性及其对建筑能耗影响的研究[D]. 重庆:重庆大学,2014. ZHANG Z X. Wall heat storage characteristics and its impact on building energy consumption study[D]. Chongqing:Chongqing University,2014.
[13] 秦兴红. 山东地区办公建筑自然通风的节能分析及舒适性探讨[D]. 济南:山东建筑大学,2010. QIN X H. Shandong region office building energy-saving analysis of natural ventilation and comfort to explore[D]. Jinan:Shandong Jianzhu University,2010.
[14] 孔凡红. 节能建筑围护结构热湿耦合传递的影响综述[J]. 太阳能学报,2012,(S1):91-97. KONG F H. The influence of the energy-saving building palisade structure heat coupling transfer review[J]. Journal of Solar Energy,2012,(S1):91-97.
[15] FITSUM T,KUMAR K,PAUL F. Transient model for coupled heat,air and moisture transfer through multilayered porous media[J]. International Journal of Heat and Mass Transfer,2010,53(15/16):3035-3044.
[16] HAGENTOFT C E, ADL-ZARRABI B, SASIC A. Final report:methodology of HAM-modeling. Report R-02:8[R]. Gothenburg:Chalmers University of Technology,2002:19-23.
[17] 刘伟,范爱武,黄晓明. 多孔介质传热传质理论与应用[M]. 北京:科学出版社,2006. LIU W,FAN A W,HUANG X M. Porous Medium Heat and Mass Transfer Theory and Application[M]. Beijing:Science Press,2006.
[18] 王莹莹,刘艳峰,刘加平. 湿迁移对墙体传热的影响分析[J]. 土木建筑与环境工程,2012,(6):109-114. WANG Y Y,LIU Y F,LIU J P. The influence of moisture transfer for wall heat transfer analysis[J]. Journal of Civil Engineering and Environmental Engineering,2012,(6):109-114.
[19] 郭兴国. 热湿气候地区多层墙体热湿耦合迁移特性研究[D]. 长沙:湖南大学,2010. GUO X G. Hot wet climate region coupled transport of multilayer wall thermal wet research[D]. Changsha:Hunan University,2010.
[1] 闫美月, 邓坚, 潘良明, 马在勇, 李想, 邓杰文, 何清澈. 基于流量振荡的窄矩形通道内临界热通量机理模型[J]. 化工学报, 2022, 73(7): 2962-2970.
[2] 李亚飞, 邓建强, 何阳. 跨临界CO2快速膨胀过程中非平衡冷凝和闪蒸机理的数值研究[J]. 化工学报, 2022, 73(7): 2912-2923.
[3] 王沛, 魏荣阔. 光热驱动多孔氧化铈热化学循环解水制氢非热质平衡模型[J]. 化工学报, 2022, 73(7): 2885-2894.
[4] 王忠东, 朱春英, 马友光, 付涛涛. 并行微通道内液液两相流及介尺度效应[J]. 化工学报, 2022, 73(6): 2563-2572.
[5] 刘怡琳, 李钰, 余亚雄, 黄哲庆, 周强. 基于重置温度方法的双参数介尺度气固传热模型构建[J]. 化工学报, 2022, 73(6): 2612-2621.
[6] 施炜斌, 龙姗姗, 杨晓钢, 蔡心悦. 计及气泡诱导与剪切湍流的气泡破碎、湍流相间扩散及传质模型[J]. 化工学报, 2022, 73(6): 2573-2588.
[7] 张文龙,宁尚雷,靳海波,马磊,何广湘,杨索和,郭晓燕,张荣月. 鼓泡塔内空气-醋酸体系流体力学参数的CFD-PBM耦合模型数值模拟[J]. 化工学报, 2022, 73(6): 2589-2602.
[8] 蒋鸣, 周强. 气固流化床介尺度结构形成机制及过滤曳力模型研究进展[J]. 化工学报, 2022, 73(6): 2468-2485.
[9] 汪帆, 刘岩博, 李康丽, 童丽, 金美堂, 汤伟伟, 陈明洋, 龚俊波. 溶液结晶中的介尺度成核过程研究进展[J]. 化工学报, 2022, 73(6): 2318-2333.
[10] 殷亚然, 朱星星, 张先明, 朱春英, 付涛涛, 马友光. 微通道内醇胺/离子液体复配水溶液吸收CO2的传质特性[J]. 化工学报, 2022, 73(5): 1930-1939.
[11] 王宜飞, 王清强, 姬德生, 李申芳, 金楠, 赵玉潮. 微通道壁面浸润性对气-液两相流的影响规律研究[J]. 化工学报, 2022, 73(4): 1501-1514.
[12] 张宇伦, 陈长坤, 雷鹏. 不同可燃液体层高度下浸润多孔介质砂床组合燃烧特性实验研究[J]. 化工学报, 2022, 73(4): 1826-1833.
[13] 王晔, 张婉雨, 汪彬, 耑锐, 任枫, 蔡爱峰, 杨光, 吴静怡. 多孔网幕泡破压力预测模型的建立及实验验证[J]. 化工学报, 2022, 73(3): 1102-1110.
[14] 张井志, 赵玉婷, 王英迪, 齐建荟, 雷丽. 正弦型微通道内液-液两相流型及流动特性实验研究[J]. 化工学报, 2022, 73(3): 1111-1118.
[15] 张苗, 杨洪海, 尹勇, 徐悦, 沈俊杰, 卢心诚, 施伟刚, 王军. 氧化石墨烯/水脉动热管的启动及传热特性[J]. 化工学报, 2022, 73(3): 1136-1146.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!