化工学报 ›› 2019, Vol. 70 ›› Issue (9): 3256-3266.DOI: 10.11949/0438-1157.20181521
收稿日期:
2018-12-27
修回日期:
2019-04-23
出版日期:
2019-09-05
发布日期:
2019-09-05
通讯作者:
罗向龙
作者简介:
王羽鹏(1993—),男,硕士研究生,基金资助:
Yupeng WANG(),Junwei LIANG,Xianglong LUO(),Yifan LI,Jianyong CHEN,Ying CHEN
Received:
2018-12-27
Revised:
2019-04-23
Online:
2019-09-05
Published:
2019-09-05
Contact:
Xianglong LUO
摘要:
有机朗肯循环(ORC)是中低温热能-电能转换中最具前景的技术之一,近年来受到越来越多的关注。工质是ORC实现的载体,由于热源及可选工质的多样性,工质筛选及系统的优化对于提升ORC综合性能非常重要,而物性及过程特性的准确预测是关键。提出了基于神经网络-基团贡献法的ORC系统性能计算方法,建立了涵盖11个基团的基团表,从REFPROP中调用51种工质7958组数据进行神经网络训练,获得了ORC中各个热力过程能量转换和熵差的计算关联式。计算了21种常用工质在1584组工况下的ORC系统性能,并与基于传统方法计算的ORC系统性能参数进行了对比。结果显示预测得到的ORC系统热效率、净输出功和系统?效率与用REFPROP计算得出的结果相比误差分别为1.01%、1.02%和1.61%,相比传统方法,预测精度有显著提高。
中图分类号:
王羽鹏, 梁俊伟, 罗向龙, 李逸帆, 陈健勇, 陈颖. 基于神经网络的有机朗肯循环过程及循环性能计算方法[J]. 化工学报, 2019, 70(9): 3256-3266.
Yupeng WANG, Junwei LIANG, Xianglong LUO, Yifan LI, Jianyong CHEN, Ying CHEN. Novel prediction method of process and system performance for organic Rankine cycle based on neural network[J]. CIESC Journal, 2019, 70(9): 3256-3266.
基团分类 | |||||
---|---|---|---|---|---|
—CH3 | —CH2— | >CH— | >C< | ═CH2 | ═CH— |
—F | —Cl | —O— | —I | ═C< |
表1 基团库
Table 1 Functional groups
基团分类 | |||||
---|---|---|---|---|---|
—CH3 | —CH2— | >CH— | >C< | ═CH2 | ═CH— |
—F | —Cl | —O— | —I | ═C< |
工质 | ||||||||
---|---|---|---|---|---|---|---|---|
R1234yf | R134a | R11 | R113 | R114 | R115 | R123 | R125 | R143a |
R152a | R218 | R227ea | R236ea | R236fa | R245ca | R245fa | propane | R32 |
butane | isobutane | pentane | ipentane | R1233zd | R1234ze | R141b | R142b | Re143a |
R161 | R21 | dimethylether | R124 | R1216 | Re245cb2 | Re245fa2 | propylene | C4F10 |
R12 | Re347mcc | CF3I | isobutene | C5F12 | neopentne | hexane | isohxane | heptane |
acetone | R365mfc | cis-butene | trans-butene | dimethyl carbonate | diethyl ether |
表2 51种训练神经网络的工质
Table 2 51 training working fluids for neuron network
工质 | ||||||||
---|---|---|---|---|---|---|---|---|
R1234yf | R134a | R11 | R113 | R114 | R115 | R123 | R125 | R143a |
R152a | R218 | R227ea | R236ea | R236fa | R245ca | R245fa | propane | R32 |
butane | isobutane | pentane | ipentane | R1233zd | R1234ze | R141b | R142b | Re143a |
R161 | R21 | dimethylether | R124 | R1216 | Re245cb2 | Re245fa2 | propylene | C4F10 |
R12 | Re347mcc | CF3I | isobutene | C5F12 | neopentne | hexane | isohxane | heptane |
acetone | R365mfc | cis-butene | trans-butene | dimethyl carbonate | diethyl ether |
基团 | —CH3 | —CH2— | >CH— | >C< | ═C< | ═CH— | ═CH2 | —F | —Cl | —I | —O— |
---|---|---|---|---|---|---|---|---|---|---|---|
出现次数 | 47 | 28 | 14 | 50 | 6 | 9 | 3 | 147 | 20 | 1 | 10 |
表3 神经网络训练样本中基团数总和
Table 3 Total number of groups using for training neuron network
基团 | —CH3 | —CH2— | >CH— | >C< | ═C< | ═CH— | ═CH2 | —F | —Cl | —I | —O— |
---|---|---|---|---|---|---|---|---|---|---|---|
出现次数 | 47 | 28 | 14 | 50 | 6 | 9 | 3 | 147 | 20 | 1 | 10 |
ANN-GCM相关参数 | W p/kW | W t/kW | Q evap/kJ | s p/(J/(kg·K)) | s evap/(J/(kg·K)) | s t/(J/(kg·K)) | |
---|---|---|---|---|---|---|---|
隐层神经元个数 | 24 | 20 | |||||
隐层传递函数 | tansig | logsig | |||||
训练算法 | L-M | B-R | |||||
R 2 | 训练集 | 0.9987 | 0.9999 | 0.9999 | 0.9981 | 0.9998 | 0.9999 |
验证集 | 0.9979 | 0.9994 | 0.9999 | — | — | — | |
测试集 | 0.9981 | 0.9999 | 0.9999 | 0.9950 | 0.9641 | 0.9999 | |
总集 | 0.9983 | 0.9999 | 0.9999 | 0.9976 | 0.9941 | 0.9999 | |
AAD/% | 训练集 | 5.8428 | 1.6693 | 0.4365 | 4.8560 | 0.3800 | 0.8130 |
验证集 | 1.3102 | 0.6451 | 0.3238 | — | — | — | |
测试集 | 2.0479 | 0.8767 | 0.2770 | 5.9408 | 1.8656 | 0.9509 | |
总集 | 4.5937 | 1.3968 | 0.3957 | 5.0187 | 0.6029 | 0.8336 | |
Bias/% | 训练集 | -2.1722 | -0.0856 | -0.0081 | -0.0102 | -0.0003 | -0.0003 |
验证集 | 0.5396 | 0.2184 | 0.0690 | — | — | — | |
测试集 | 2.0479 | 0.8767 | 0.2770 | -0.0106 | 0.0136 | -0.0007 | |
总集 | -1.5178 | -0.0448 | -0.0006 | -0.0103 | 0.0018 | -0.0004 | |
RMS | 训练集 | 0.0023 | 0.4738 | 2.6511 | 8.0677 | 66.8208 | 8.0677 |
验证集 | 0.0004 | 0.1299 | 2.1518 | — | — | — | |
测试集 | 0.0019 | 0.4949 | 1.8710 | 38.1364 | 114.3525 | 84.2851 | |
总集 | 0.0445 | 0.6522 | 1.5682 | 25.9051 | 44.9142 | 69.7206 |
表4 ANN-GCM预测ORC各个过程的能量转换的相关参数
Table 4 Parameters of using ANN-GCM for predicting heat transfer in ORC process
ANN-GCM相关参数 | W p/kW | W t/kW | Q evap/kJ | s p/(J/(kg·K)) | s evap/(J/(kg·K)) | s t/(J/(kg·K)) | |
---|---|---|---|---|---|---|---|
隐层神经元个数 | 24 | 20 | |||||
隐层传递函数 | tansig | logsig | |||||
训练算法 | L-M | B-R | |||||
R 2 | 训练集 | 0.9987 | 0.9999 | 0.9999 | 0.9981 | 0.9998 | 0.9999 |
验证集 | 0.9979 | 0.9994 | 0.9999 | — | — | — | |
测试集 | 0.9981 | 0.9999 | 0.9999 | 0.9950 | 0.9641 | 0.9999 | |
总集 | 0.9983 | 0.9999 | 0.9999 | 0.9976 | 0.9941 | 0.9999 | |
AAD/% | 训练集 | 5.8428 | 1.6693 | 0.4365 | 4.8560 | 0.3800 | 0.8130 |
验证集 | 1.3102 | 0.6451 | 0.3238 | — | — | — | |
测试集 | 2.0479 | 0.8767 | 0.2770 | 5.9408 | 1.8656 | 0.9509 | |
总集 | 4.5937 | 1.3968 | 0.3957 | 5.0187 | 0.6029 | 0.8336 | |
Bias/% | 训练集 | -2.1722 | -0.0856 | -0.0081 | -0.0102 | -0.0003 | -0.0003 |
验证集 | 0.5396 | 0.2184 | 0.0690 | — | — | — | |
测试集 | 2.0479 | 0.8767 | 0.2770 | -0.0106 | 0.0136 | -0.0007 | |
总集 | -1.5178 | -0.0448 | -0.0006 | -0.0103 | 0.0018 | -0.0004 | |
RMS | 训练集 | 0.0023 | 0.4738 | 2.6511 | 8.0677 | 66.8208 | 8.0677 |
验证集 | 0.0004 | 0.1299 | 2.1518 | — | — | — | |
测试集 | 0.0019 | 0.4949 | 1.8710 | 38.1364 | 114.3525 | 84.2851 | |
总集 | 0.0445 | 0.6522 | 1.5682 | 25.9051 | 44.9142 | 69.7206 |
工质 | CAS | 分子式 | 相对分子质量 | 工质 | CAS | 分子式 | 相对分子质量 | |
---|---|---|---|---|---|---|---|---|
R123 | 306-83-2 | CF3CHCl2 | 152.93 | R290 | 74-98-6 | CH3CH2CH3 | 44.096 | |
R125 | 354-33-6 | CHF2CF3 | 120.02 | R600 | 106-97-8 | CH3CH2CH2CH3 | 58.122 | |
R134a | 811-97-2 | CF3CH2F | 102.03 | R600a | 75-28-5 | CH(CH3)2CH3 | 58.122 | |
R143a | 420-46-2 | CH3CF3 | 84.041 | R601 | 709-66-0 | CH3CH2CH2CH2CH3 | 72.149 | |
R152a | 75-37-6 | CH3CHF2 | 66.051 | R601a | 78-78-4 | (CH3)2CHCH2CH3 | 72.149 | |
R218 | 76-19-7 | CF3CF2CF3 | 188.02 | n-C6H14 | 110-54-3 | CH3(CH2)4CH3 | 86.175 | |
R227ea | 431-89-0 | CF3CHFCF3 | 170.03 | C5F12 | 678-26-2 | CF3CF2CF2CF2CF3 | 288.03 | |
R236ea | 431-63-0 | CF3CHFCHF2 | 152.04 | R1233zd | 102687-65-0 | CHCl═CHCF3 | 130.5 | |
R236fa | 690-39-1 | CF3CH2CF3 | 152.04 | R1234yf | 754-12-1 | CH2═CFCF3 | 114.04 | |
R245ca | 679-86-7 | CH2FCF2CHF2 | 134.05 | R1234ze | 29118-24-9 | CF3CH═CHF | 114.04 | |
R245fa | 460-73-1 | CF3CH2CHF2 | 134.05 |
表5 21种用于验证模型的工质
Table 5 21 working fluids used to validate model
工质 | CAS | 分子式 | 相对分子质量 | 工质 | CAS | 分子式 | 相对分子质量 | |
---|---|---|---|---|---|---|---|---|
R123 | 306-83-2 | CF3CHCl2 | 152.93 | R290 | 74-98-6 | CH3CH2CH3 | 44.096 | |
R125 | 354-33-6 | CHF2CF3 | 120.02 | R600 | 106-97-8 | CH3CH2CH2CH3 | 58.122 | |
R134a | 811-97-2 | CF3CH2F | 102.03 | R600a | 75-28-5 | CH(CH3)2CH3 | 58.122 | |
R143a | 420-46-2 | CH3CF3 | 84.041 | R601 | 709-66-0 | CH3CH2CH2CH2CH3 | 72.149 | |
R152a | 75-37-6 | CH3CHF2 | 66.051 | R601a | 78-78-4 | (CH3)2CHCH2CH3 | 72.149 | |
R218 | 76-19-7 | CF3CF2CF3 | 188.02 | n-C6H14 | 110-54-3 | CH3(CH2)4CH3 | 86.175 | |
R227ea | 431-89-0 | CF3CHFCF3 | 170.03 | C5F12 | 678-26-2 | CF3CF2CF2CF2CF3 | 288.03 | |
R236ea | 431-63-0 | CF3CHFCHF2 | 152.04 | R1233zd | 102687-65-0 | CHCl═CHCF3 | 130.5 | |
R236fa | 690-39-1 | CF3CH2CF3 | 152.04 | R1234yf | 754-12-1 | CH2═CFCF3 | 114.04 | |
R245ca | 679-86-7 | CH2FCF2CHF2 | 134.05 | R1234ze | 29118-24-9 | CF3CH═CHF | 114.04 | |
R245fa | 460-73-1 | CF3CH2CHF2 | 134.05 |
方法 | AAD/% | |||||
---|---|---|---|---|---|---|
Q evap | Q con | W P | W t | W net | η th | |
本文方法 | 0.26 | 0.31 | 1.72 | 0.97 | 1.01 | 1.02 |
Su等[ | 5.05 | 5.08 | 10.7 | 7.25 | 8.28 | 4.89 |
Joback等[ | 10.95 | 10.98 | 52.69 | 10.26 | 13 | 5.42 |
表6 不同方法预测ORC系统参数的误差对比
Table 6 AADs of process parameters using different methods
方法 | AAD/% | |||||
---|---|---|---|---|---|---|
Q evap | Q con | W P | W t | W net | η th | |
本文方法 | 0.26 | 0.31 | 1.72 | 0.97 | 1.01 | 1.02 |
Su等[ | 5.05 | 5.08 | 10.7 | 7.25 | 8.28 | 4.89 |
Joback等[ | 10.95 | 10.98 | 52.69 | 10.26 | 13 | 5.42 |
工质 | EATII | T evap/K | T con/K | T s/K | Error/% | |||||
---|---|---|---|---|---|---|---|---|---|---|
W p | W t | Q evap | Q con | W net | | |||||
R236ea | 35.248 | 360 | 298.15 | 5 | 1.18 | 0.27 | 0.04 | 0.01 | 0.25 | 0.21 |
R236fa | 36.5556 | 360 | 298.15 | 5 | 0.59 | 0.56 | 0.12 | 0.04 | 0.60 | 0.48 |
R245ca | 29.715 | 410 | 298.15 | 5 | 1.61 | 0.87 | 0.31 | 0.18 | 0.85 | 0.54 |
R245fa | 28.2336 | 410 | 298.15 | 5 | 0.08 | 0.72 | 0.26 | 0.14 | 0.75 | 0.49 |
表7 同分异构体的预测误差
Table 7 Errors of predicting isomers
工质 | EATII | T evap/K | T con/K | T s/K | Error/% | |||||
---|---|---|---|---|---|---|---|---|---|---|
W p | W t | Q evap | Q con | W net | | |||||
R236ea | 35.248 | 360 | 298.15 | 5 | 1.18 | 0.27 | 0.04 | 0.01 | 0.25 | 0.21 |
R236fa | 36.5556 | 360 | 298.15 | 5 | 0.59 | 0.56 | 0.12 | 0.04 | 0.60 | 0.48 |
R245ca | 29.715 | 410 | 298.15 | 5 | 1.61 | 0.87 | 0.31 | 0.18 | 0.85 | 0.54 |
R245fa | 28.2336 | 410 | 298.15 | 5 | 0.08 | 0.72 | 0.26 | 0.14 | 0.75 | 0.49 |
1 | 宋建忠, 张小松, 李舒宏, 等 . 太阳能有机朗肯循环系统的实验特性[J]. 化工学报, 2014, 65(12): 4958-4964. |
Song J Z , Zhang X S , Li S H , et al . Experimental characteristics of solar organic Rankine cycle system[J]. CIESC Journal, 2014, 65(12): 4958-4964. | |
2 | 刘继芬, 王景甫, 马重芳, 等 . 中低温地热发电循环参数的优化[J]. 化工学报, 2011, 62(S1): 190-196. |
Liu J F , Wang J F , Ma C F , et al . Optimization of cycle parameters in low-medium temperature geothermal power generation[J]. CIESC Journal, 2011, 62(S1): 190-196. | |
3 | 杨凯, 张红光, 宋松松, 等 . 变工况下车用柴油机排气余热有机朗肯循环回收系统[J]. 化工学报, 2015, 66(3): 1097-1103. |
Yang K , Zhang H G , Song S S , et al . Waste heat organic Rankine cycle of vehicle diesel engine under variable working conditions[J]. CIESC Journal, 2015, 66(3): 1097-1103. | |
4 | 黄仁龙, 罗向龙, 梁志辉, 等 . 基于分液冷凝的R245fa/pentane混合工质朗肯循环多目标优化[J]. 化工学报, 2018, 69(5): 2040-2048. |
Huang R L , Luo X L , Liang Z H , et al . Multi-objective optimization of Rankine cycle using R245fa/pentane based on liquid-vapor separation[J]. CIESC Journal, 2018, 69(5): 2040-2048. | |
5 | 许俊俊, 罗向龙, 王永真, 等 . ORC工质选择的多级非结构性模糊决策分析[J]. 化工学报, 2015, 66(3): 1051-1058. |
Xu J J , Luo X L , Wang Y Z , et al . Optimum selection of ORC working fluid using multi-level fuzzy optimization and non-structural fuzzy decision[J]. CIESC Journal, 2015, 66(3): 1051-1058. | |
6 | Imran M , Usman M , Park B , et al . Multi-objective optimization of evaporator of organic Rankine cycle (ORC) for low temperature geothermal heat source[J]. Applied Thermal Engineering, 2015, 80: 1-9. |
7 | Györke G , Deiters U K , Groniewsky A , et al . Novel classification of pure working fluids for organic Rankine cycle[J]. Energy, 2018, 145: 288-300. |
8 | Bao J , Zhao L . A review of working fluid and expander selections for organic Rankine cycle[J]. Renewable and Sustainable Energy Reviews, 2013, 24: 325-342. |
9 | He C , Liu C , Zhou M , et al . A new selection principle of working fluids for subcritical organic Rankine cycle coupling with different heat sources[J]. Energy, 2014, 68: 283-291. |
10 | Bricks J L , Kachkovskii A D , Slominskii Y L , et al . Molecular design of near infrared polymethine dyes: a review[J]. Dyes and Pigments, 2015, 121: 238-255. |
11 | Gholivand M B , Khodadadian M , Ahmadi F . Computer aided-molecular design and synthesis of a high selective molecularly imprinted polymer for solid-phase extraction of furosemide from human plasma[J]. Analytica Chimica Acta, 2010, 658(2): 225-232. |
12 | Struebing H , Ganase Z , Karamertzanis P G , et al . Computer-aided molecular design of solvents for accelerated reaction kinetics[J]. Nature Chemistry, 2013, 5(11): 952-957. |
13 | Papadopoulos A I , Stijepovic M , Linke P . On the systematic design and selection of optimal working fluids for organic Rankine cycles[J]. Applied Thermal Engineering, 2010, 30(6/7): 760-769. |
14 | Palma-Flores O , Flores-Tlacuahuac A , Canseco-Melchor G . Optimal molecular design of working fluids for sustainable low-temperature energy recovery[J]. Computers & Chemical Engineering, 2015, 72: 334-349. |
15 | Palma-Flores O , Flores-Tlacuahuac A , Canseco-Melchorb G . Simultaneous molecular and process design for waste heat recovery[J]. Energy, 2016, 99: 32-47. |
16 | White M T , Oyewunmi O A , Haslam A J , et al . Industrial waste-heat recovery through integrated computer-aided working-fluid and ORC system optimization using SAFT-γMie[J]. Energy Conversion and Management, 2017, 150: 851-869. |
17 | Joback K , Reid R . Estimation of pure-component properties from group-contributions[J]. Chemical Engineering Communications, 1987, 57(1/2/3/4/5/6): 233-243. |
18 | Constantinou L , Gani R . New group contribution method for estimating properties of pure compounds[J]. AIChE Journal, 1994, 40: 1697-1710. |
19 | Marrero-Morejón J , Pardillo-Fontdevila E . Estimation of pure compound properties using group-interaction contributions[J]. AIChE Journal, 1999, 45(3): 615-621. |
20 | Lazzús J A . ρ-T-P prediction for ionic liquids using neural networks[J]. Journal of the Taiwan Institute of Chemical Engineers, 2009, 40(2): 213-232. |
21 | 苏文, 赵力, 邓帅 . 基于基团拓扑的遗传神经网络工质临界温度预测[J]. 化工学报, 2016, 67(11): 4689-4695. |
Su W , Zhao L , Deng S . Prediction of refrigerant critical temperature with genetic neural network based on group topology[J]. CIESC Journal, 2016, 67(11): 4689-4695. | |
22 | Mondejar M E , Cignitti S , Abildskov J , et al . Prediction of properties of new halogenated olefins using two group contribution approaches[J]. Fluid Phase Equilibria, 2017, 433: 79-96. |
23 | Barbieri E S , Morini M , Pinelli M . Development of a model for the simulation of organic Rankine cycles based on group contribution techniques[C]// ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2011. |
24 | Su W , Zhao L , Deng S . Developing a performance evaluation model of organic Rankine cycle for working fluids based on the group contribution method[J]. Energy Conversion and Management, 2017, 132: 307-315. |
25 | Lemmon E W , Huber M L , Mclinden M O . NIST standard reference database 23: reference fluid thermodynamic and transport properties-REFPROP. 9.1[DB]. 2013. |
26 | Deng S , Su W , Zhao L . A neural network for predicting normal boiling point of pure refrigerants using molecular groups and a topological index[J]. International Journal of Refrigeration, 2016, 63: 63-71. |
27 | Taskinen J , Yliruusi J . Prediction of physicochemical properties based on neural network modelling[J]. Advanced Drug Delivery Reviews, 2003, 55(9): 1163-1183. |
28 | Moosavi M , Soltani N . Prediction of hydrocarbon densities using an artificial neural network-group contribution method up to high temperatures and pressures[J]. Thermochim Acta, 2013, 556: 89-96. |
29 | Moosavi M , Sedghamiz E , Abareshi M . Liquid density prediction of five different classes of refrigerant systems (HCFCs, HFCs, HFEs, PFAs and PFAAs) using the artificial neural network-group contribution method[J]. International Journal of Refrigeration, 2014, 48: 188-200. |
30 | Su W , Zhao L , Deng S . Group contribution methods in thermodynamic cycles: physical properties estimation of pure working fluids[J]. Renewable and Sustainable Energy Reviews, 2017, 79: 984-1001. |
31 | Peng D Y , Robinson D B . A new two-constant equation of state[J]. Minerva Ginecologica, 1976, 12(11/12): 3069–3078. |
[1] | 温凯杰, 郭力, 夏诏杰, 陈建华. 一种耦合CFD与深度学习的气固快速模拟方法[J]. 化工学报, 2023, 74(9): 3775-3785. |
[2] | 尹刚, 李伊惠, 何飞, 曹文琦, 王民, 颜非亚, 向禹, 卢剑, 罗斌, 卢润廷. 基于KPCA和SVM的铝电解槽漏槽事故预警方法[J]. 化工学报, 2023, 74(8): 3419-3428. |
[3] | 张曼铮, 肖猛, 闫沛伟, 苗政, 徐进良, 纪献兵. 危废焚烧处理耦合有机朗肯循环系统工质筛选与热力学优化[J]. 化工学报, 2023, 74(8): 3502-3512. |
[4] | 诸程瑛, 王振雷. 基于改进深度强化学习的乙烯裂解炉操作优化[J]. 化工学报, 2023, 74(8): 3429-3437. |
[5] | 闫琳琦, 王振雷. 基于STA-BiLSTM-LightGBM组合模型的多步预测软测量建模[J]. 化工学报, 2023, 74(8): 3407-3418. |
[6] | 徐野, 黄文君, 米俊芃, 申川川, 金建祥. 多源信息融合的离心式压缩机喘振诊断方法[J]. 化工学报, 2023, 74(7): 2979-2987. |
[7] | 郭雨莹, 敬加强, 黄婉妮, 张平, 孙杰, 朱宇, 冯君炫, 陆洪江. 稠油管道水润滑减阻及压降预测模型修正[J]. 化工学报, 2023, 74(7): 2898-2907. |
[8] | 于源, 陈薇薇, 付俊杰, 刘家祥, 焦志伟. 几何相似涡流空气分级机环形区流场变化规律研究及预测[J]. 化工学报, 2023, 74(6): 2363-2373. |
[9] | 高学金, 姚玉卓, 韩华云, 齐咏生. 基于注意力动态卷积自编码器的发酵过程故障监测[J]. 化工学报, 2023, 74(6): 2503-2521. |
[10] | 李艳辉, 丁邵明, 白周央, 张一楠, 于智红, 邢利梅, 高鹏飞, 王永贞. 非常规服役超临界锅炉的微纳尺度腐蚀动力学模型建立及应用[J]. 化工学报, 2023, 74(6): 2436-2446. |
[11] | 姚晓宇, 沈俊, 李健, 李振兴, 康慧芳, 唐博, 董学强, 公茂琼. 流体气液临界参数测量方法研究进展[J]. 化工学报, 2023, 74(5): 1847-1861. |
[12] | 黄磊, 孔令学, 白进, 李怀柱, 郭振兴, 白宗庆, 李平, 李文. 油页岩添加对准东高钠煤灰熔融行为影响的研究[J]. 化工学报, 2023, 74(5): 2123-2135. |
[13] | 陈科, 杜理, 曾英, 任思颖, 于旭东. 四元体系LiCl+MgCl2+CaCl2+H2O 323.2 K相平衡研究及计算[J]. 化工学报, 2023, 74(5): 1896-1903. |
[14] | 党玉荣, 莫春兰, 史科锐, 方颖聪, 张子杨, 李作顺. 综合评价模型联合遗传算法的混合工质ORC系统性能研究[J]. 化工学报, 2023, 74(5): 1884-1895. |
[15] | 贠程, 王倩琳, 陈锋, 张鑫, 窦站, 颜廷俊. 基于社团结构的化工过程风险演化路径深度挖掘[J]. 化工学报, 2023, 74(4): 1639-1650. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||