化工学报 ›› 2023, Vol. 74 ›› Issue (S1): 141-153.DOI: 10.11949/0438-1157.20221591
收稿日期:
2022-11-12
修回日期:
2022-12-23
出版日期:
2023-06-05
发布日期:
2023-09-27
通讯作者:
李春煜
作者简介:
周晓庆(1998—),女,博士研究生,zhxiaoqing19@sjtu.edu.cn
基金资助:
Xiaoqing ZHOU(), Chunyu LI(), Guang YANG, Aifeng CAI, Jingyi WU
Received:
2022-11-12
Revised:
2022-12-23
Online:
2023-06-05
Published:
2023-09-27
Contact:
Chunyu LI
摘要:
耦合CLSVOF和焓-多孔介质方法参数化分析了可变Weber数和壁面过冷度对单液滴撞击不同曲率过冷光滑曲面波纹基底的结冰行为。聚焦于液滴粒径固定时,不同曲率单列波纹板和复列波纹板引起的液滴收缩、振荡和破碎的动力学行为差异的作用机理,探究表面过冷度和液滴初速度对结冰相界面推移速率的影响规律。模拟结果表明,液滴撞击结冰动力学是流场紊乱特性和换热边界时变特征耦合作用的结果。高Weber数撞击导致液滴铺展前缘的Rayleigh-Taylor不稳定波加速液滴结冰,后期液滴破碎引起的界面能转化使结冰速率降低。过冷度的增加可阻碍液膜断裂和减少液滴的周向毛细爬升面积。研究结果对微观液滴毛细结冰动力学和防结冰工程化应用提供理论参考。
中图分类号:
周晓庆, 李春煜, 杨光, 蔡爱峰, 吴静怡. 液滴撞击不同曲率过冷波纹面结冰动力学行为及机理研究[J]. 化工学报, 2023, 74(S1): 141-153.
Xiaoqing ZHOU, Chunyu LI, Guang YANG, Aifeng CAI, Jingyi WU. Icing kinetics and mechanism of droplet impinging on supercooled corrugated plates with different curvature[J]. CIESC Journal, 2023, 74(S1): 141-153.
过冷度/℃ | Cmush |
---|---|
10 | 5×104 |
20 | 1×106 |
表1 黏糊系数Cmush的选取规则 (接触角θ=140°)
Table 1 Selection principal of viscosity coefficient Cmush (θ=140°)
过冷度/℃ | Cmush |
---|---|
10 | 5×104 |
20 | 1×106 |
图7 液滴0.5m/s撞击单列波纹板和复列波纹板的无量纲扩展半径
Fig.7 Dimensionless extension radius of droplet impacting on single and complex corrugated plates with velocity of 0.5m/s
图8 液滴0.5m/s撞击单列波纹板和复列波纹板的结冰界面覆盖率图及流场图(流场图中黄色实线表示出水相界面)
Fig.8 Coverage diagram and flow field diagram of the icing interface and flow field diagram where droplets impact single and complex corrugated plates at 0.5 m/s (yellow color is employed in the flow field diagram to describe the water phase interface)
图9 液滴2.0 m/s撞击单列波纹板和复列波纹板的无量纲铺展半径曲线及结冰界面覆盖率曲线
Fig.9 Dimensionless spreading radius curve and icing interface coverage curve of droplets impacting on single and complex corrugated plates at 2.0 m/s
图10 液滴2.0 m/s撞击Ds=3 mm/Dss=3 mm/Ds=5 mm/Dss=5 mm的水相速度分布图
Fig.10 Water phase velocity contour of droplets impacting on plates of Ds=3 mm/Dss=3 mm/Ds=5 mm/Dss=5 mm at 2.0 m/s
图12 液滴以5.0 m/s撞击Dss=1 mm/Dss=3 mm/Dss=5 mm波纹板初期的液滴行为和速度云图
Fig.12 Droplet behaviors and velocity cloud image of the initial impaction of droplet on corrugated plates with Dss=1 mm/Dss=3 mm/Dss=5 mm at 5.0 m/s
图13 液滴以2.0、5.0和8.0 m/s撞击Dss=1 mm/Dss=3 mm/Dss=5 mm波纹板的结冰界面覆盖率曲线
Fig.13 Coverage curve of ice interface of the corrugated plate with Dss=1 mm/Dss=3 mm/Dss=5 mm of droplet impaction at 2.0, 5.0 and 8.0 m/s
图14 液滴5.0 m/s撞击过冷度10℃和20℃的三种曲率复列波纹板的液滴结冰覆盖率和液滴结冰行为
Fig.14 Droplet icing coverage and droplet icing behavior of three curvature complex corrugated plates with a subcooling degree of 10℃ and 20℃ impacted by droplet 5.0 m/s
1 | He Z W, Jamil M I, Li T, et al. Enhanced surface icephobicity on an elastic substrate[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2022, 38(1): 18-35. |
2 | Bajpayee A, Rivera-Gonzalez N, Braham E J, et al. Multiscale textured mesh substrates that glide alcohol droplets and impede ice nucleation[J]. Advanced Engineering Materials, 2022, 24(8): 2101524. |
3 | Zhao C Y, Yan X, He W, et al. Exploring the limits of condensation heat transfer: a numerical study of microscale-confined condensation between parallel surfaces having wetting contrast[J]. International Journal of Heat and Mass Transfer, 2022, 193: 122758. |
4 | 张亚东, 张伟, 秦朔. 喷雾冷却换热机理研究进展[J]. 制冷技术, 2020, 40(1): 34-41, 53. |
Zhang Y D, Zhang W, Qin S. Research progress of spray cooling heat transfer mechanism[J]. Chinese Journal of Refrigeration Technology, 2020, 40(1): 34-41, 53. | |
5 | 邹同华, 申 江, 陈天及. 水平管外结冰特性的理论与实验研究[J]. 制冷技术, 2001, 21(3): 32-35. |
Zou T H, Shen J, Chen T J. Theory and experimental research of ice frozen characteristic outside horizontal tube[J]. Chinese Journal of Refrigeration Technology, 2001, 21(3): 32-35. | |
6 | 齐隽楠, 吴嘉峰, 陈亚平. 疏水表面蒸汽滴状冷凝传热实验分析[J]. 制冷技术, 2015, 35(3): 11-14. |
Qi J N, Wu J F, Chen Y P. Experimental analysis on dropwise condensation of steam on hydrophobic surfaces[J]. Chinese Journal of Refrigeration Technology, 2015, 35(3): 11-14. | |
7 | 武卫东, 吕婉豆, 汪德龙. 铝基超疏水表面凝露初期的实验研究[J]. 制冷技术, 2017, 37(1): 13-17. |
Wu W D, Lv W D, Wang D L. Experimental study on initial morphology of condensation on aluminum based super-hydrophobic surface[J]. Chinese Journal of Refrigeration Technology, 2017, 37(1): 13-17. | |
8 | Gomaa H, Tembely M, Esmail N, et al. Bouncing of cloud-sized microdroplets on superhydrophobic surfaces[J]. Physics of Fluids, 2020, 32(12): 122118. |
9 | Zhang H X, Yi X, Du Y X, et al. Dynamic behavior of water drops impacting on cylindrical superhydrophobic surfaces[J]. Physics of Fluids, 2019, 31(3): 032104. |
10 | Wang Y L, Wang Y X, Wang S R, et al. Droplet impact on cylindrical surfaces: effects of surface wettability, initial impact velocity, and cylinder size[J]. Journal of Colloid and Interface Science, 2020, 578: 207-217. |
11 | Liu X, Min J C, Zhang X. Dynamic behavior and maximum spreading of droplets impacting concave spheres[J]. Physics of Fluids, 2020, 32(9): 092109. |
12 | Zhang X, Ji B Q, Liu X, et al. Maximum spreading and energy analysis of ellipsoidal impact droplets[J]. Physics of Fluids, 2021, 33(5): 052108. |
13 | Hu Z F, Wu X M, Chu F Q, et al. Off-centered droplet impact on single-ridge superhydrophobic surfaces[J]. Experimental Thermal and Fluid Science, 2021, 120: 110245. |
14 | Sayyari M J, Naghedifar S A, Esfahani J A. Pinch-off location and time during 2D droplet impact onto a wetted stationary cylinder using the lattice Boltzmann method[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42(3): 142. |
15 | Luo J, Wu S Y, Xiao L, et al. The maximum spreading lengths in circumferential and axial directions when droplets impact on cylindrical surfaces[J]. International Journal of Multiphase Flow, 2021, 143: 103774. |
16 | 罗佳, 吴双应, 肖兰, 等. 液滴撞击圆柱壁面后液膜最大扩展长度的理论分析[J]. 工程热物理学报, 2021, 42(12): 3254-3259. |
Luo J, Wu S Y, Xiao L, et al. Theoretical analysis for the maximum spreading lengths of liquid film after the droplet impacting on cylindrical surface[J]. Journal of Engineering Thermophysics, 2021, 42(12): 3254-3259. | |
17 | Zhang L Z, Wang Y B, Gao S R, et al. Re-touch rebound patterns and contact time for a droplet impacting a superhydrophobic cylinder[J]. Journal of the Taiwan Institute of Chemical Engineers, 2021, 126: 359-370. |
18 | Luo J, Wu S Y, Xiao L, et al. Hydrodynamics and heat transfer of multiple droplets successively impacting on cylindrical surface[J]. International Journal of Heat and Mass Transfer, 2021, 180: 121749. |
19 | 范隆杰, 吴晗, 岑春泽, 等. 高韦伯数液滴撞壁诱导的中间射流破碎现象[J]. 燃烧科学与技术, 2019, 25(3): 197-203. |
Fan L J, Wu H, Cen C Z, et al. Phenomenon of central jet breakage induced by high-Weber-number droplet impact[J]. Journal of Combustion Science and Technology, 2019, 25(3): 197-203. | |
20 | Liu Y Z, Wang T B, Song Z Y, et al. Spreading and freezing of supercooled water droplets impacting an ice surface[J]. Applied Surface Science, 2022, 583: 152374. |
21 | Chang S N, Qi H F, Zhou S, et al. Experimental study on freezing characteristics of water droplets on cold surfaces[J]. International Journal of Heat and Mass Transfer, 2022, 194: 123108. |
22 | Kong W L, Wu H C, Bian P X, et al. A diffusion-enhancing icing theory for the freezing transition of supercooled large water droplet in impact[J]. International Journal of Heat and Mass Transfer, 2022, 187: 122471. |
23 | 范瑶, 王宏, 朱恂, 等. 壁面曲率及过冷度对液滴铺展特性的影响[J]. 化工学报, 2016, 67(7): 2709-2717. |
Fan Y, Wang H, Zhu X, et al. Effect of curvature and undercooling degree of surface on behavior of droplet spreading[J]. CIESC Journal, 2016, 67(7): 2709-2717. | |
24 | 李栋, 王鑫, 高尚文, 等. 单液滴撞击超疏水冷表面的反弹及破碎行为[J]. 化工学报, 2017, 68(6): 2473-2482. |
Li D, Wang X, Gao S W, et al. Rebounding and splashing behavior of single water droplet impacting on cold superhydrophobic surface[J]. CIESC Journal, 2017, 68(6): 2473-2482. | |
25 | Vahab M, Murphy D, Shoele K. Fluid dynamics of frozen precipitation at the air-water interface[J]. Journal of Fluid Mechanics, 2022, 933: A36. |
26 | 周鑫, 邓乐东, 王宏, 等. 圆柱壁面上液滴凝固相变对其运动行为的影响[J]. 化工学报, 2019, 70(3): 883-891. |
Zhou X, Deng L D, Wang H, et al. Effect of cooled cylindrical surface on droplet dynamic behavior[J]. CIESC Journal, 2019, 70(3): 883-891. | |
27 | Hu A J, Liu D. 3D simulation of micro droplet impact on the structured superhydrophobic surface[J]. International Journal of Multiphase Flow, 2022, 147: 103887. |
28 | Li R, Zhu P Z, Yin Z H, et al. Molecular dynamics simulation of nanodroplets impacting stripe-textured surfaces[J]. Langmuir, 2022, 38(22): 7058-7066. |
29 | Brackbill J U, Kothe D B, Zemach C. A continuum method for modeling surface tension[J]. Journal of Computational Physics, 1992, 100(2): 335-354. |
30 | Bae J, Yee K. Numerical investigation of droplet breakup effects on droplet-wall interactions under SLD conditions[J]. International Journal of Aeronautical and Space Sciences, 2021, 22(5): 1005-1018. |
31 | Blake J, Thompson D, Raps D, et al. Simulating the freezing of supercooled water droplets impacting a cooled substrate[J]. AIAA Journal, 2015, 53(7): 1725-1739. |
32 | Liu X, Zhang X, Min J C. Maximum spreading of droplets impacting spherical surfaces[J]. Physics of Fluids, 2019, 31(9): 092102. |
33 | Banitabaei S A, Amirfazli A. Droplet impact onto a solid sphere: effect of wettability and impact velocity[J]. Physics of Fluids, 2017, 29(6): 062111. |
34 | Meng Z N, Zhang P. Dynamic propagation of ice-water phase front in a supercooled water droplet[J]. International Journal of Heat and Mass Transfer, 2020, 152: 119468. |
35 | Zhang R, Hao P F, Zhang X W, et al. Tunable droplet breakup dynamics on micropillared superhydrophobic surfaces[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2018, 34(26): 7942-7950. |
[1] | 任辉, 王宏, 朱恂, 陈蓉, 廖强, 丁玉栋. 润湿性图案表面上的液滴侧向弹跳行为[J]. 化工学报, 2021, 72(8): 4255-4266. |
[2] | 陈宏霞, 肖红洋, 孙源, 刘霖. 微柱表面液滴定壁温沸腾实验研究[J]. 化工学报, 2019, 70(9): 3363-3369. |
[3] | 周鑫, 邓乐东, 王宏, 朱恂, 陈蓉, 廖强, 丁玉栋. 圆柱壁面上液滴凝固相变对其运动行为的影响[J]. 化工学报, 2019, 70(3): 883-891. |
[4] | 梁刚涛, 牟兴森, 郭亚丽, 沈胜强, 张吉礼. 液滴冲击加热壁面沸腾现象特征分析[J]. 化工学报, 2016, 67(6): 2211-2217. |
[5] | 何孝天, 谢剑, 程愉, 刘琪, 徐进良. 液滴撞击丝网渗漏影响因素及临界准则[J]. 化工学报, 2016, 67(12): 4983-4993. |
[6] | 蓝美娟, 李媛, 王喜世. 单液滴撞击受热枫桦木炭化表面的实验研究[J]. 化工学报, 2013, 64(8): 2807-2812. |
[7] | 梁超, 王宏, 朱恂, 陈蓉, 丁玉栋, 廖强. 液滴撞击不同浸润性壁面动态过程的数值模拟[J]. 化工学报, 2013, 64(8): 2745-2751. |
[8] | 杨宝海, 王宏, 朱恂, 丁玉栋, 周劲. 速度对液滴撞击超疏水壁面行为特性的影响[J]. 化工学报, 2012, 63(10): 3027-3033. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 299
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 171
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||