1 |
Mao T , Kuhn D C S , Tran H . Spread and rebound of liquid droplets upon impact on flat surfaces[J]. AIChE Journal, 1997, 43(9): 2169-2179.
|
2 |
陆规, 彭晓峰, 王晓东 . 核化沸腾液滴的铺展实验观察[J]. 热科学与技术, 2006, 5(3): 195-200.
|
|
Lu G , Peng X F , Wang X D . Experimental investigation on spreading of droplets with evaporation and nucleation[J]. Journal of Thermal Science and Technology, 2006, 5(3): 195-200.
|
3 |
Mehdi-Nejad V , Mostaghimi J , Chandra S . Air bubble entrapment under an impacting droplet[J]. Physics of Fluids, 2003, 15(1): 173-183.
|
4 |
Li X , Mao L , Ma X . Dynamic behavior of water droplet impact on microtextured surfaces: the effect of geometrical parameters on anisotropic wetting and the maximum spreading diameter[J]. Langmuir, 2013, 29(4): 1129-1138.
|
5 |
Li X , Ma X , Lan Z . Dynamic behavior of the water droplet impact on a textured hydrophobic/superhydrophobic surface: the effect of the remaining liquid film arising on the pillars’ tops on the contact time[J]. Langmuir, 2010, 26(7): 4831-4838.
|
6 |
Kannan R , Sivakumar D . Drop impact process on a hydrophobic grooved surface[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 317(1/2/3): 694-704.
|
7 |
施其明, 贾志海, 林琪焱 . 液滴撞击微结构疏水表面的动态特性[J]. 化工进展, 2016, 35(12): 3818-3824.
|
|
Shi Q M , Jia Z H , Lin Q Y . Dynamic behavior of droplets impacting on microstructured hydrophobic surfaces[J]. Chemical Industry and Engineering Progress, 2016, 35(12): 3818-3824.
|
8 |
Nakoryakov V E , Misyura S Y , Elistratov S L . The behavior of water droplets on the heated surface[J]. International Journal of Heat and Mass Transfer, 2012, 55(23/24): 6609-6617.
|
9 |
王晓东, 陆规, 彭晓峰, 等 . 加热板上蒸发液滴动态特性的实验[J]. 航空动力学报, 2006, 21(6): 1001-1007.
|
|
Wang X D , Lu G , Peng X F , et al . Experimental investigation of dynamic evaporation characteristics of liquid droplet on heated surface[J]. Journal of Aerospace Power, 2006, 21(6): 1001-1007.
|
10 |
陆规, 彭晓峰, 冯妍卉 . 加热板上液滴沸腾实验研究[J]. 热科学与技术, 2009, 8(3): 198-204.
|
|
Lu G , Peng X F . Feng Y H. Experimental investigation of boiling of droplets on heated surfaces[J]. Journal of Thermal Science and Technology, 2009, 8(3): 198-204.
|
11 |
梁刚涛, 牟兴森, 郭亚丽, 等 . 液滴冲击加热壁面沸腾现象特征分析[J]. 化工学报, 2016, 67(6): 2211-2217.
|
|
Liang G T , Mu X S , Guo Y L , et al . Characteristic analyses of boiling phenomena in process of drops impingement on heated surfaces[J]. CIESC Journal, 2016, 67(6): 2211-2217.
|
12 |
Liang G , Shen S , Guo Y , et al . Boiling from liquid drops impact on a heated wall[J]. International Journal of Heat and Mass Transfer, 2016, 100: 48-57.
|
13 |
Tran T , Staat H J J , Susarrey-Arce A , et al . Droplet impact on superheated micro-structured surfaces[J]. Soft Matter, 2013, 9(12): 3272-3282.
|
14 |
Hays R , Maynes D , Crockett J . Thermal transport to droplets on heated superhydrophobic substrates[J]. International Journal of Heat and Mass Transfer, 2016, 98: 70-80.
|
15 |
Duursma G , Kennedy R , Sefiane K , et al . Leidenfrost droplets on microstructured surfaces[J]. Heat Transfer Engineering, 2016, 37(13/14): 1190-1200.
|
16 |
Kwon H , Bird J C , Varanasi K K . Increasing Leidenfrost point using micro-nano hierarchical surface structures[J]. Applied Physics Letters, 2013, 103(20): 201601.
|
17 |
Misyura S Y . The effect of Weber number, droplet sizes and wall roughness on crisis of droplet boiling[J]. Experimental Thermal and Fluid Science, 2017, 84: 190-198.
|
18 |
Tartarini P , Lorenzini G , Randi M R . Experimental study of water droplet boiling on hot, non-porous surfaces[J]. Heat and Mass Transfer, 1999, 34(6): 437-447.
|
19 |
沈胜强, 张洁珊, 梁刚涛 . 液滴撞击加热壁面传热实验研究[J]. 物理学报 2015, 64(13): 134704.
|
|
Shen S Q , Zhang J S , Liang G T . Experimental study of heat transfer from droplet impact on a heated surface[J]. Acta Physica Sinica, 2015, 64(13): 134704.
|
20 |
Wu Y , Zhang X , Zhang X , et al . Modeling and experimental study of vapor phase-diffusion driven sessile drop evaporation[J]. Applied Thermal Engineering, 2014, 70(1): 560-564.
|
21 |
Misyura S Y . Contact angle and droplet heat transfer during evaporation on structured and smooth surfaces of heated wall[J]. Applied Surface Science, 2017, 414: 188-196.
|
22 |
Misyura S Y . Wall effect on heat transfer crisis[J]. Experimental Thermal and Fluid Science, 2016, 70: 389-396.
|
23 |
Misyura S Y . Nucleate boiling in bidistillate droplets[J]. International Journal of Heat and Mass Transfer, 2014, 71: 197-205.
|
24 |
Misyura S Y . Droplets boiling crisis of ethanol water solution on duralumin substrate with SiO2 nanoparticles coating[J]. Experimental Thermal and Fluid Science, 2016, 75: 43-53.
|
25 |
Song D , Song B , Hu H , et al . Contact angle and impinging process of droplets on partially grooved hydrophobic surfaces[J]. Applied Thermal Engineering, 2015, 85: 356-364.
|
26 |
Mollaret R , Sefiane K , Christy J R E , et al . Experimental and numerical investigation of the evaporation into air of a drop on a heated surface[J]. Chemical Engineering Research and Design, 2004, 82(4): 471-480.
|
27 |
Deendarlianto, Takata Y , Hidaka S , et al . Effect of static contact angle on the droplet dynamics during the evaporation of a water droplet on the hot walls[J]. International Journal of Heat and Mass Transfer, 2014, 71: 691-705.
|
28 |
宋云超, 宁智, 孙春华, 等 . 液滴撞击壁面气泡的产生及运动研究[J]. 机械工程学报, 2014, 50(2): 153-158.
|
|
Song Y C , Ning Z , Sun C H , et al . Research on the generation and movement of the bubble inside impacting droplet[J]. Journal of Mechanical Engineering, 2014, 50(2): 153-158.
|
29 |
Chaves H , Kubitzek A M , Obermeier F . Dynamic processes occurring during the spreading of thin liquid films produced by drop impact on hot walls[J]. International Journal of Heat and Fluid Flow, 1999, 20(5): 470-476.
|
30 |
Nikolopoulos N , Theodorakakos A , Bergeles G . A numerical investigation of the evaporation process of a liquid droplet impinging onto a hot substrate[J]. International Journal of Heat and Mass Transfer, 2007, 50(1/2): 303-319.
|
31 |
Lu G , Wang X D , Yan W M . Nucleate boiling inside small evaporating droplets: an experimental and numerical study[J]. International Journal of Heat and Mass Transfer, 2017, 108: 2253-2261.
|