化工学报 ›› 2023, Vol. 74 ›› Issue (S1): 154-160.DOI: 10.11949/0438-1157.20221634
收稿日期:
2022-11-16
修回日期:
2022-12-26
出版日期:
2023-06-05
发布日期:
2023-09-27
通讯作者:
代彦军
作者简介:
蒋祎璠(1997—),女,硕士,yvonnej@sjtu.edu.cn
基金资助:
Yifan JIANG1(), Lei LIU2, Yao ZHAO2, Yanjun DAI2()
Received:
2022-11-16
Revised:
2022-12-26
Online:
2023-06-05
Published:
2023-09-27
Contact:
Yanjun DAI
摘要:
随着光源技术的发展,UVLED光学元件被广泛应用于各个领域,保证UVLED光学元件的温度在安全范围内至关重要。对应用于UVLED的液冷散热系统进行实验与仿真研究,设计了六边型、直流型、U型、蛇型,四种不同流道的液冷板。在热通量为2.2 W/cm2的情况下,实验测试液冷板的换热面温度,并通过数值仿真研究其传热及流动性能。结果表明:实验与仿真结果的相对误差为3%,其中液冷工质为导热油时,六边型流道液冷板的温度分布最均匀且温控效果最好,流量为2.5 L/min时,最高温度为49.7℃,直流型流道板面温差最大但压降最低仅为5.34 kPa。
中图分类号:
蒋祎璠, 刘蕾, 赵耀, 代彦军. UVLED光学元件液冷散热系统性能研究[J]. 化工学报, 2023, 74(S1): 154-160.
Yifan JIANG, Lei LIU, Yao ZHAO, Yanjun DAI. Research on the performance of liquid cooling system for UVLED optical components[J]. CIESC Journal, 2023, 74(S1): 154-160.
1 | Huang J W. Design and fabrication of UVLED array aligner for proximity and soft contact exposure[C]//SPIE Advanced Lithography. San Jose, California, USA: Optical Microlithography ⅩⅩⅩⅢ, 2020, 11327: 256-266. |
2 | 陈颖聪, 文尚胜, 吴玉香. 基于塑料散热器无基板板上芯片封装的LED热分析[J]. 光学学报, 2013, 33(8): 231-236. |
Chen Y C, Wen S S, Wu Y X. Thermal analysis for LED chipon board package based on plastic radiator without substrate[J]. Acta Optica Sinica, 2013, 33(8): 231-236. | |
3 | Zhao X J, Cai Y X, Wang J, et al. Thermal model design and analysis of the high-power LED automotive headlight cooling device[J]. Applied Thermal Engineering, 2015, 75: 248-258. |
4 | Cheng H C. On the thermal characterization of an RGB LED-based white light module[J]. Applied Thermal Engineering, 2012, 38: 105-116. |
5 | 勾昱君. 大功率LED热管散热器传热强化研究[D]. 北京: 北京工业大学, 2014. |
Gou Y J. An investigation on heat transfer augmentation of large power LED heat pipe radiators[D]. Beijing: Beijing University of Technology, 2014. | |
6 | Lai Y. Liquid cooling of bright LEDs for automotive applications[J]. Applied Thermal Engineering, 2009, 29(5/6): 1239-1244. |
7 | Hamida M B B, Hatami M. Optimization of fins arrangements for the square light emitting diode (LED) cooling through nanofluid-filled microchannel[J]. Scientific Reports, 2021, 11: 12610. |
8 | Bao Y C, Cai Y X, Wang J, et al. Experimental study on LED heat dissipation based on enhanced corona wind by graphene decoration[J]. IEEE Transactions on Plasma Science, 2019, 47(8): 4121-4126. |
9 | Delendik K, Kolyago N, Voitik O. Investigation of cooling system on the base of heat pipes for high-power LEDs[J]. AIP Conference Proceedings, 2019, 2116(1): 030013. |
10 | 李红传, 纪献兵, 郑晓欢, 等. 并行多通道大功率LED回路热管散热器[J]. 光电子·激光, 2015, 26(1): 48-53. |
Li H C, Ji X B, Zheng X H, et al. Loop heat pipe radiator with parallel multi-channel for high power LED[J]. Journal of Optoelectronics·Laser, 2015, 26(1): 48-53. | |
11 | Wang J, Cai Y X, Bao Y C, et al. Enhanced ionic wind generation by graphene for LED heat dissipation[J]. International Journal of Energy Research, 2019, 43(8): 3746-3755. |
12 | Wang H, Qu J, Peng Y Q, et al. Heat transfer performance of a novel tubular oscillating heat pipe with sintered copper particles inside flat-plate evaporator and high-power LED heat sink application[J]. Energy Conversion and Management, 2019, 189: 215-222. |
13 | Lin X H, Mo S P, Jia L S, et al. Experimental study and Taguchi analysis on LED cooling by thermoelectric cooler integrated with microchannel heat sink[J]. Applied Energy, 2019, 242: 232-238. |
14 | Seo J H. Illuminance and heat transfer characteristics of high power LED cooling system with heat sink filled with ferrofluid[J]. Applied Thermal Engineering, 2018, 143: 438-449. |
15 | 温达旸, 赵荣超, 叶鸣, 等. 基于非均匀翅片液冷板的电池热管理性能研究[J]. 电源技术, 2021, 45(10): 1264-1268. |
Wen D Y, Zhao R C, Ye M, et al. Study of batteries thermal management performance based on liquid cooling plate with non-uniform pin fins[J]. Chinese Journal of Power Sources, 2021, 45(10): 1264-1268. | |
16 | 周蔚南, 孙钦, 关胜利, 等. 扰流空心翅片式微流道液冷板流动换热特性研究[J]. 新能源进展, 2021, 9(6): 506-512. |
Zhou W N, Sun Q, Guan S L, et al. Liquid flow and heat transfer characteristics of liquid cooling plate with hollow-fin[J]. Advances in New and Renewable Energy, 2021, 9(6): 506-512. | |
17 | 姚泽民. 功率型LED散热器结构热分析与优化设计[D]. 广州: 华南理工大学, 2013. |
Yao Z M. Thermal analysis and optimized design for high power LED heat sink structure[D]. Guangzhou: South China University of Technology, 2013. | |
18 | 李海超, 李晋尧, 徐靖翔, 等. 基于大功率LED-UV固化系统散热装置的研究[J]. 北京印刷学院学报, 2019, 27(5): 95-98. |
Li H C, Li J Y, Xu J X, et al. Research on heat sink based on high power LED-UV curing system[J]. Journal of Beijing Institute of Graphic Communication, 2019, 27(5): 95-98. | |
19 | 倪笠, 崔晓钰, 马柯. 大功率UV-LED固化灯水冷散热器[J]. 光电子技术, 2016, 36(2): 130-134. |
Ni L, Cui X Y, Ma K. A liquid cold plate for high power UV-LED curing lamps[J]. Optoelectronic Technology, 2016, 36(2): 130-134. | |
20 | 韦士腾, 徐尚龙, 赵新年. LED液冷设计及其小型化控制系统研究[J]. 电子机械工程, 2022, 38(1): 35-39, 44. |
Wei S T, Xu S L, Zhao X N. Research on LED liquid cooling design and its miniaturization control system[J]. Electro-Mechanical Engineering, 2022, 38(1): 35-39, 44. | |
21 | Tuckerman D B, Pease R F W. High-performance heat sinking for VLSI[J]. IEEE Electron Device Letters, 1981, 2(5): 126-129. |
22 | Skandakumaran P, Ortega A, Jamal-Eddine T, et al. Multi-layered SiC microchannel heat sinks - modeling and experiment[C]//The Ninth Intersociety Conference on Thermal and Thermomechanical Phenomena In Electronic Systems. Las Vegas, NV, USA: IEEE, 2004: 352-360. |
23 | Petroski J. Understanding longitudinal fin heat sink orientation sensitivity for light emitting diode (LED) lighting applications[C]//2003 International Electronic Packaging Technical Conference and Exhibition. 2003. Maui, Hawaii, USA: ASMEDC, 2003. |
24 | Zhang Y P. Thermal performance study of integrated cold plate with power module[J]. Applied Thermal Engineering, 2009, 29(17/18): 3568-3573. |
25 | Xie X L. Numerical study of laminar heat transfer and pressure drop characteristics in a water-cooled minichannel heat sink[J]. Applied Thermal Engineering, 2009, 29(1): 64-74. |
26 | Garg H, Negi V S, Wadhwa A S, et al. Numerical analysis of different shapes of microchannel for miniature cooling system[C]//2014 Recent Advances in Engineering and Computational Sciences (RAECS). Chandigarh, India: IEEE, 2014. |
27 | Sharma C S. A novel method of energy efficient hotspot-targeted embedded liquid cooling for electronics: an experimental study[J]. International Journal of Heat and Mass Transfer, 2015, 88: 684-694. |
28 | Bi C. Heat transfer enhancement in mini-channel heat sinks with dimples and cylindrical grooves[J]. Applied Thermal Engineering, 2013, 55(1/2): 121-132. |
29 | Ijam A, Saidur R, Ganesan P, et al. Cooling of minichannel heat sink using nanofluids[J]. International Communications in Heat and Mass Transfer, 2012, 39(8): 1188-1194. |
30 | Khoshvaght-Aliabadi M, Nozan F. Water cooled corrugated minichannel heat sink for electronic devices: effect of corrugation shape[J]. International Communications in Heat and Mass Transfer, 2016, 76: 188-196. |
31 | Pence D. Reduced pumping power and wall temperature in microchannel heat sinks with fractal-like branching channel networks[J]. Microscale Thermophysical Engineering, 2003, 6(4): 319-330. |
32 | Cao H S. Optimization design of microchannel heat sink geometry for high power laser mirror[J]. Applied Thermal Engineering, 2010, 30(13): 1644-1651. |
[1] | 黄琮琪, 吴一梅, 陈建业, 邵双全. 碱性电解水制氢装置热管理系统仿真研究[J]. 化工学报, 2023, 74(S1): 320-328. |
[2] | 魏琳, 郭剑, 廖梓豪, Dafalla Ahmed Mohmed, 蒋方明. 空气流量对空冷燃料电池电堆性能的影响研究[J]. 化工学报, 2022, 73(7): 3222-3231. |
[3] | 郑克晴, 孙亚, 闫阳天, 李丽, 杨钧. 一种热电协同增强的固体氧化物燃料电池新型连接件的数值模拟[J]. 化工学报, 2022, 73(12): 5572-5580. |
[4] | 彭明, 夏强峰, 蒋理想, 张瑞元, 郭凌燚, 陈黎, 陶文铨. 流道布置对风冷燃料电池性能影响的研究[J]. 化工学报, 2022, 73(10): 4625-4637. |
[5] | 山訸, 马秋鸣, 潘权稳, 曹伟亮, 王强, 王如竹. 电动汽车电池冷却器冷却液侧传热与流动性能仿真[J]. 化工学报, 2021, 72(S1): 194-202. |
[6] | 马秋鸣, 聂磊, 潘权稳, 山訸, 曹伟亮, 王强, 王如竹. 电动汽车电池冷却器换热性能[J]. 化工学报, 2021, 72(S1): 170-177. |
[7] | 梁坤峰, 王莫然, 高美洁, 吕振伟, 徐红玉, 董彬, 高凤玲. 纯电动车集成热管理系统性能的热力学分析[J]. 化工学报, 2021, 72(S1): 494-502. |
[8] | 梁坤峰, 米国强, 徐红玉, 高春艳, 董彬, 李亚超, 王莫然. 动力电池双向热管理系统性能分析与优化[J]. 化工学报, 2021, 72(8): 4146-4154. |
[9] | 阿嵘, 庞丽萍, 杨东升, 齐玢. 高速飞行器机载综合热管理系统设计与优化[J]. 化工学报, 2020, 71(S1): 315-321. |
[10] | 马德胜, 庞丽萍, 毛晓东, 董素君. 机载综合环控系统的热管理[J]. 化工学报, 2020, 71(S1): 436-440. |
[11] | 杨晓东, 庞丽萍, 阿嵘, 金亮. 高速飞行器燃油热管理系统飞行热航时[J]. 化工学报, 2020, 71(S1): 425-429. |
[12] | 赵强, 郭航, 叶芳, 马重芳. 质子交换膜燃料电池流场板研究进展[J]. 化工学报, 2020, 71(5): 1943-1963. |
[13] | 赵洪波, 刘杰, 马彪, 郭强, 刘晓辉, 潘凤文. 水冷PEMFC热管理系统控制策略及仿真研究[J]. 化工学报, 2020, 71(5): 2139-2150. |
[14] | 施尚, 余建祖, 陈梦东, 高红霞, 谢永奇. 基于泡沫铜/石蜡的锂电池热管理系统性能[J]. 化工学报, 2017, 68(7): 2678-2683. |
[15] | 陈思彤, 李微微, 王学科, 王树博, 谢晓峰, 朱彤. 相变材料用于质子交换膜燃料电池的热管理[J]. 化工学报, 2016, 67(S1): 1-6. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||