化工学报 ›› 2021, Vol. 72 ›› Issue (8): 4255-4266.DOI: 10.11949/0438-1157.20210224
任辉1(),王宏1,2(),朱恂1,2,陈蓉1,2,廖强1,2,丁玉栋1,2
收稿日期:
2021-02-03
修回日期:
2021-04-19
出版日期:
2021-08-05
发布日期:
2021-08-05
通讯作者:
王宏
作者简介:
任辉(1996—),女,硕士研究生,基金资助:
Hui REN1(),Hong WANG1,2(),Xun ZHU1,2,Rong CHEN1,2,Qiang LIAO1,2,Yudong DING1,2
Received:
2021-02-03
Revised:
2021-04-19
Online:
2021-08-05
Published:
2021-08-05
Contact:
Hong WANG
摘要:
表面润湿性不均匀会影响液滴撞击表面后的运动行为。通过液滴撞击润湿性图案表面,利用疏水表面上的亲水条纹可以实现液滴的侧向弹跳。实验过程中探究了不同的表面性质与撞击条件对液滴侧向弹跳运动行为的影响,为实现液滴定向弹跳提供了新的思路。实验结果表明,润湿性图案主要影响液滴撞击表面后的回缩过程,并且图案尺寸、液滴速度、液滴撞击位置均会对液滴撞击表面后的分裂以及侧向弹跳产生影响。通过实验获得了上述参数对液滴侧向弹跳的质量和距离的影响规律。
中图分类号:
任辉, 王宏, 朱恂, 陈蓉, 廖强, 丁玉栋. 润湿性图案表面上的液滴侧向弹跳行为[J]. 化工学报, 2021, 72(8): 4255-4266.
Hui REN, Hong WANG, Xun ZHU, Rong CHEN, Qiang LIAO, Yudong DING. Lateral bouncing behavior of droplets on the wettability-patterned surface[J]. CIESC Journal, 2021, 72(8): 4255-4266.
条纹尺寸 | 针管高度 | 偏移距离N |
---|---|---|
9 mm×0.3 mm | 10~60 mm | 1 mm |
2 mm | ||
9 mm×0.5 mm | ||
3 mm |
表1 实验参数设置
Table 1 Experimental parameters setting
条纹尺寸 | 针管高度 | 偏移距离N |
---|---|---|
9 mm×0.3 mm | 10~60 mm | 1 mm |
2 mm | ||
9 mm×0.5 mm | ||
3 mm |
图4 x方向上液滴两侧的速度变化曲线(亲水条纹9 mm×0.3 mm,撞击偏移距离2 mm,撞击高度20 mm)
Fig.4 The velocity change curve on both sides of the droplet in the x direction (hydrophilic stripe: 9 mm×0.3 mm, N=2 mm, impact height: 20 mm)
图6 撞击液滴内部的压力分布云图(亲水条纹9 mm×0.3 mm,撞击偏移距离2 mm、撞击高度20 mm)
Fig.6 The pressure distribution cloud diagram inside the impacting droplet (hydrophilic stripe: 9 mm×0.3 mm, N=2 mm, impact height: 20 mm)
图8 液滴撞击表面不同位置运动行为对比(亲水条纹9 mm×0.3 mm,撞击高度30 mm)
Fig.8 Comparison of the motion behavior of the impact droplet at different positions on the surface (hydrophilic stripe: 9 mm×0.3 mm, impact height: 30 mm)
图9 不同偏移距离N液滴撞击表面与亲水条纹接触面积示意图(亲水条纹9 mm×0.3 mm,撞击高度30 mm)
Fig.9 The contact area between impact droplet and hydrophilic stripe on the surface at different offset distances (hydrophilic stripe: 9 mm×0.3 mm, impact height: 30 mm)
图13 液滴速度与分裂质量、弹跳距离的关系(亲水条纹9 mm×0.3 mm,撞击偏移距离2 mm)
Fig.13 The relationship between droplet velocity and split-mass / bounce distance (hydrophilic stripe: 9 mm×0.3 mm, N=2 mm)
图14 撞击液滴和亲水区域接触面积与液滴最大铺展面积之比(亲水条纹9 mm×0.3 mm,撞击偏移距离2 mm)
Fig.14 The ratio of the contact area between the impact droplet and the hydrophilic area to the maximum spread area of the droplet (hydrophilic stripe: 9 mm×0.3 mm, N=2 mm)
图15 分裂液滴x方向平均速度图(亲水条纹9 mm×0.3 mm,撞击偏移距离2 mm)
Fig.15 The average velocity of the split droplet in the?x?direction (hydrophilic stripe: 9 mm×0.3 mm, N=2 mm)
1 | Parker A R, Lawrence C R. Water capture by a desert beetle[J]. Nature, 2001, 414(6859): 33-34. |
2 | Ju J, Bai H, Zheng Y, et al. A multi-structural and multi-functional integrated fog collection system in cactus[J]. Nature Communications, 2012, 3: 1247. |
3 | de Ruiter J, Soto D, Varanasi K K. Self-peeling of impacting droplets[J]. Nature Physics, 2018, 14(1): 35-39. |
4 | 马强, 吴晓敏. 表面特性对结霜和融霜排液的影响[J]. 化工学报, 2017, 68: 90-95. |
Ma Q, Wu X M. Effect of surface wettability on frosting, defrosting and drainage[J]. CIESC Journal, 2017, 68: 90-95. | |
5 | Sas I, Gorga R E, Joines J A, et al. Literature review on superhydrophobic self-cleaning surfaces produced by electrospinning[J]. Journal of Polymer Science Part B: Polymer Physics, 2012, 50(12): 824-845. |
6 | Mahapatra P S, Ghosh A, Ganguly R, et al. Key design and operating parameters for enhancing dropwise condensation through wettability patterning[J]. International Journal of Heat and Mass Transfer, 2016, 92: 877-883. |
7 | Sharma C S, Lam C W E, Milionis A, et al. Self-sustained cascading coalescence in surface condensation[J]. ACS Applied Materials & Interfaces, 2019, 11(30): 27435-27442. |
8 | 范亚茹, 陈志豪, 赵彦杰, 等. 混合蒸气冷凝过程中均匀温度面上液滴自发移动现象及特性[J]. 化工学报, 2019, 70(4): 1358-1366. |
Fan Y R, Chen Z H, Zhao Y J, et al. Characteristics of spontaneous movement of condensate drop on uniform temperature surface during condensation of binary vapor mixture[J]. CIESC Journal, 2019, 70(4): 1358-1366. | |
9 | Song D, Bhushan B. Water condensation and transport on bioinspired triangular patterns with heterogeneous wettability at a low temperature[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2019, 377(2138): 20180335. |
10 | Bai H Y, Zhang C H, Long Z Y, et al. A hierarchical hydrophilic/hydrophobic cooperative fog collector possessing self-pumped droplet delivering ability[J]. Journal of Materials Chemistry A, 2018, 6(42): 20966-20972. |
11 | Xing Y, Shang W F, Wang Q Q, et al. Integrative bioinspired surface with wettable patterns and gradient for enhancement of fog collection[J]. ACS Applied Materials & Interfaces, 2019, 11(11): 10951-10958. |
12 | Wan Y L, Cui P, Xu J K, et al. Directional water-collecting behavior of pine needle surface[J]. Materials Letters, 2019, 255: 126561. |
13 | Sarkar S, Sabhachandani P, Stroopinsky D, et al. Dynamic analysis of immune and cancer cell interactions at single cell level in microfluidic droplets[J]. Biomicrofluidics, 2016, 10(5): 054115. |
14 | Gao C L, Wang L, Lin Y C, et al. Droplets manipulated on photothermal organogel surfaces[J]. Advanced Functional Materials, 2018, 28(35): 1803072. |
15 | Cheng Y, Yang Q, Fang Y, et al. Underwater anisotropic 3D superoleophobic tracks applied for the directional movement of oil droplets and the microdroplets reaction[J]. Advanced Materials Interfaces, 2019, 6(10): 1900067. |
16 | Chaudhury M K, Whitesides G M. How to make water Run uphill[J]. Science, 1992, 256(5063): 1539-1541. |
17 | Daniel S, Chaudhury M K, Chen J C. Fast drop movements resulting from the phase change on a gradient surface[J]. Science, 2001, 291(5504): 633-636. |
18 | Zheng Y, Bai H, Huang Z, et al. Directional water collection on wetted spider silk[J]. Nature, 2010, 463(7281): 640-643. |
19 | Yan Y F, He L L, Li Y, et al. Unidirectional liquid transportation and selective permeation for oil/water separation on a gradient nanowire structured surface[J]. Journal of Membrane Science, 2019, 582: 246-253. |
20 | Chen X Z, Li X, Zuo P, et al. Controllable fabrication of unidirectional liquid spreading surface through confining plasma eruption and femtosecond laser double pulses[J]. Applied Surface Science, 2020, 504: 144110. |
21 | Yang C, Zhang Z W, Li G. Programmable droplet manipulation by combining a superhydrophobic magnetic film and an electromagnetic pillar array[J]. Sensors and Actuators B: Chemical, 2018, 262: 892-901. |
22 | Yang Z N, Park J K, Kim S. Magnetically responsive elastomer-silicon hybrid surfaces for fluid and light manipulation[J]. Small, 2018, 14(2): 1702839. |
23 | Rossegger E, Hennen D, Griesser T, et al. Directed motion of water droplets on multi-gradient photopolymer surfaces[J]. Polymer Chemistry, 2019, 10(15): 1882-1893. |
24 | 杨宝海, 王宏, 朱恂, 等. 速度对液滴撞击超疏水壁面行为特性的影响[J]. 化工学报, 2012, 63(10): 3027-3033. |
Yang B H, Wang H, Zhu X, et al. Effect of velocity on behavior of droplet impacting superhydrophobic surface[J]. CIESC Journal, 2012, 63(10): 3027-3033. | |
25 | Liang G T, Guo Y L, Yang Y, et al. Liquid sheet behaviors during a drop impact on wetted cylindrical surfaces[J]. International Communications in Heat and Mass Transfer, 2014, 54: 67-74. |
26 | 胡志锋, 褚福强, 张旋, 等. 液滴偏心撞击超疏水微柱表面: 形态变化与接触时间[J]. 工程热物理学报, 2020, 41(9): 2266-2271. |
Hu Z F, Chu F Q, Zhang X, et al. Off-centered droplet impact on the superhydrophobic surface with a single ridge: morphological evolution and contact time[J]. Journal of Engineering Thermophysics, 2020, 41(9): 2266-2271. | |
27 | Ito Y, Heydari M, Hashimoto A, et al. The movement of a water droplet on a gradient surface prepared by photodegradation[J]. Langmuir, 2007, 23(4): 1845-1850. |
28 | Liu C S, Zheng D M, Zhou J G, et al. Fabrication of surface energy gradients using self-assembled monolayer surfaces prepared by photodegradation[J]. Materials Science Forum, 2011, 688: 102-106. |
29 | Schneider J, Matsuoka M, Takeuchi M, et al. Understanding TiO2 photocatalysis: mechanisms and materials[J]. Chemical Reviews, 2014, 114(19): 9919-9986. |
30 | Pan Y L, Kong W T, Bhushan B, et al. Rapid, ultraviolet-induced, reversibly switchable wettability of superhydrophobic/superhydrophilic surfaces[J]. Beilstein Journal of Nanotechnology, 2019, 10: 866-873. |
31 | Xu J L, Chen Y Y, Xie J. Non-dimensional numerical study of droplet impacting on heterogeneous hydrophilicity/hydrophobicity surface[J]. International Journal of Heat and Mass Transfer, 2018, 116: 951-968. |
32 | Antonini C, Amirfazli A, Marengo M. Drop impact and wettability: from hydrophilic to superhydrophobic surfaces[J]. Physics of Fluids, 2012, 24(10): 102104. |
33 | Zou L, Wang H, Zhu X, et al. Droplet splitting on chemically striped surface[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 537: 139-148. |
34 | Farshchian B, Pierce J, Beheshti M S, et al. Droplet impinging behavior on surfaces with wettability contrasts[J]. Microelectronic Engineering, 2018, 195: 50-56. |
[1] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[2] | 宋瑞涛, 王派, 王云鹏, 李敏霞, 党超镔, 陈振国, 童欢, 周佳琦. 二氧化碳直接蒸发冰场排管内流动沸腾换热数值模拟分析[J]. 化工学报, 2023, 74(S1): 96-103. |
[3] | 吴馨, 龚建英, 靳龙, 王宇涛, 黄睿宁. 超声波激励下铝板表面液滴群输运特性的研究[J]. 化工学报, 2023, 74(S1): 104-112. |
[4] | 周晓庆, 李春煜, 杨光, 蔡爱峰, 吴静怡. 液滴撞击不同曲率过冷波纹面结冰动力学行为及机理研究[J]. 化工学报, 2023, 74(S1): 141-153. |
[5] | 杨越, 张丹, 郑巨淦, 涂茂萍, 杨庆忠. NaCl水溶液喷射闪蒸-掺混蒸发的实验研究[J]. 化工学报, 2023, 74(8): 3279-3291. |
[6] | 陈天华, 刘兆轩, 韩群, 张程宾, 李文明. 喷雾冷却换热强化研究进展及影响因素[J]. 化工学报, 2023, 74(8): 3149-3170. |
[7] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[8] | 何宣志, 何永清, 闻桂叶, 焦凤. 磁液液滴颈部自相似破裂行为[J]. 化工学报, 2023, 74(7): 2889-2897. |
[9] | 董明, 徐进良, 刘广林. 超临界水非均质特性分子动力学研究[J]. 化工学报, 2023, 74(7): 2836-2847. |
[10] | 郑志航, 马郡男, 闫子涵, 卢春喜. 提升管射流影响区内压力脉动特性研究[J]. 化工学报, 2023, 74(6): 2335-2350. |
[11] | 王新悦, 王俊杰, 曹思贤, 王翠, 李灵坤, 吴宏宇, 韩静, 吴昊. 玻璃内包材界面修饰对机械应力诱导的单克隆抗体聚集体形成的影响[J]. 化工学报, 2023, 74(6): 2580-2588. |
[12] | 徐文超, 孙志高, 李翠敏, 李娟, 黄海峰. 静态条件下表面活性剂E-1310对HCFC-141b水合物生成的影响[J]. 化工学报, 2023, 74(5): 2179-2185. |
[13] | 葛运通, 王玮, 李楷, 肖帆, 于志鹏, 宫敬. 多相分散体系中微油滴与改性二氧化硅表面间作用力的AFM研究[J]. 化工学报, 2023, 74(4): 1651-1659. |
[14] | 张伟政, 赵吉军, 马学忠, 张琦璇, 庞益祥, 张俊涛. 湍流效应对高速机械密封端面型槽冷却性能影响分析[J]. 化工学报, 2023, 74(3): 1228-1238. |
[15] | 李新亚, 邢雷, 蒋明虎, 赵立新. 倒锥注气强化井下油水分离水力旋流器性能研究[J]. 化工学报, 2023, 74(3): 1134-1144. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||