1 |
Sowmiah S, Srinivasadesikan V, Tseng M C, et al. On the chemical stabilities of ionic liquids[J]. Molecules (Basel, Switzerland), 2009, 14(9): 3780-3813.
|
2 |
Wu H F, Zhu Y D, Sun Z H, et al. Structure elucidation of a new cycloartane triterpene glycoside from Souliea vaginata by NMR[J]. Magnetic Resonance in Chemistry: MRC, 2016, 54(12): 991-994.
|
3 |
van Baar J F, Horton A D, de Kloe K P, et al. Ansa-zirconocenes based on N-substituted 2-methylcyclopenta[b]indoles: synthesis and catalyst evaluation in liquid propylene polymerization[J]. Organometallics, 2003, 22(13): 2711-2722.
|
4 |
Lin Y J, Wu Y P, Thul M, et al. Tunable aryl imidazolium recyclable ionic liquid with dual Brønsted-lewis acid as green catalyst for Friedel-Crafts acylation and thioesterification[J]. Molecules (Basel, Switzerland), 2020, 25(2): 352.
|
5 |
Van Dijken D J, Štacko P, Stuart M C A, et al. Chirality controlled responsive self-assembled nanotubes in water[J]. Chemical Science, 2016, 8(3): 1783-1789.
|
6 |
Török B, Bucsi I, Prakash G K S, et al. Deprotection and cleavage of peptides bound to Merrifield resin by stable dimethyl ether-poly(hydrogen fluoride) (DMEPHF) complex. A new and convenient reagent for peptide chemistry[J]. Chemical Communications, 2002(23): 2882-2883.
|
7 |
Tran P H, Huynh V H, Hansen P E, et al. An efficient and green synthesis of 1-indanone and 1-tetralone via intramolecular Friedel-Crafts acylation reaction[J]. Asian Journal of Organic Chemistry, 2015, 4(5): 482-486.
|
8 |
Zhang H, Wang Q, Huang L, et al. An efficient one-pot synthesis of indanone fused heterocyclic compounds via SeO2/FeCl3 promoted intramolecular Friedel-Craft acylation reaction[J]. Tetrahedron Letters, 2021, 72: 153070.
|
9 |
Begum A F, Balasubramanian K K, Shanmugasundaram B. Acid activated montmorillonite K-10 mediated intramolecular acylation: simple and convenient synthesis of 4-chromanones[J]. Tetrahedron Letters, 2021, 82: 153372.
|
10 |
Liu J X, He N, Liu C Y, et al. Engineering the porosity and acidity of H-beta zeolite by dealumination for the production of 2-ethylanthraquinone via 2-(4′-ethylbenzoyl)benzoic acid dehydration[J]. RSC Advances, 2018, 8(18): 9731-9740.
|
11 |
Bryce T A, Burrows J L. Quantitative analysis of 6, 11-dihydro-11-oxo-dibenz[b, e]oxepin-2-acetic acid (isoxepac) in plasma and urine by gas-liquid chromatography[J]. Journal of Chromatography B: Biomedical Sciences and Applications, 1978, 145(3): 393-400.
|
12 |
Gerlis L S, Gumpel J M. Isoxepac in rheumatoid arthritis: a double-blind comparison with aspirin[J]. Rheumatology, 1981, 20(1): 50-53.
|
13 |
Bell V L, Cromwell N H. Benzacridines(Ⅰ): Synthesis and reactions of 5, 6-dihydrobenz[c]acridines[J]. The Journal of Organic Chemistry, 1958, 23(6): 789-793.
|
14 |
谢何青, 漆伟君. 医药中间体伊索克酸的合成工艺改进[J]. 广州化工, 2019, 47(1): 41-42, 57.
|
|
Xie H Q, Qi W J. Improvement of the synthesis process of the pharmaceutical intermediate Isoxylic acid[J]. Guangzhou Chemical Industry, 2019, 47(1): 41-42, 57.
|
15 |
Hou Q J, Zheng B M, Bi C G, et al. Liquid-phase cascade acylation/dehydration over various zeolite catalysts to synthesize 2-methylanthraquinone through an efficient one-pot strategy[J]. Journal of Catalysis, 2009, 268(2): 376-383.
|
16 |
杨华, 董世裕. 2-乙基蒽醌酸性废水特性改进及处理方法的研究[J]. 清洗世界, 2019, 35(10): 15-16.
|
|
Yang H, Dong S Y. Study on characteristics improvement and treatment method of 2-ethylanthraquinone acid wastewater [J]. Cleaning World, 2019, 35 (10): 15-16.
|
17 |
Pandey S. Analytical applications of room-temperature ionic liquids: a review of recent efforts[J]. Analytica Chimica Acta, 2006, 556(1): 38-45.
|
18 |
Poole C. Ionic liquids[J]. Encyclopedia of Separation Science, 2007, 302(5646): 1-8.
|
19 |
Sood K, Saini Y, Thakur K K. Ionic liquids in catalysis: a review[J]. Materials Today: Proceedings, 2021, 81: 739-744.
|
20 |
Erapalapati V, Hale U A, Madhavan N. Phosphorus pentoxide for amide and peptide bond formation with minimal by-products[J]. Tetrahedron Letters, 2019, 60(49): 151311.
|
21 |
Kore R, Kelley S P, Sawant A D, et al. Are ionic liquids and liquid coordination complexes really different? — Synthesis, characterization, and catalytic activity of AlCl3/base catalysts[J]. Chemical Communications (Cambridge, England), 2020, 56(40): 5362-5365.
|
22 |
Kore R, Uppara P V, Rogers R D. Replacing HF or AlCl3 in the acylation of isobutylbenzene with chloroaluminate ionic liquids[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(28): 10330-10334.
|
23 |
Sun X W, Zhao S Q. Revealing the catalytic mechanism of an ionic liquid with an isotope exchange method[J]. Petroleum Science, 2011, 8(4): 495-501.
|
24 |
Erapalapati V, Hale U A, Madhavan N. Phosphorus pentoxide for amide and peptide bond formation with minimal by-products[J]. Tetrahedron Letters, 2019, 60(49): 151311.
|
25 |
Kore R, Kelley S P, Aduri P, et al. Mixed metal double salt ionic liquids comprised of[HN222]2[ZnCl4] and AlCl3 provide tunable Lewis acid catalysts related to the ionic environment[J]. Dalton Transactions (Cambridge, England: 2003), 2018, 47(23): 7795-7803.
|