化工学报 ›› 2024, Vol. 75 ›› Issue (4): 1065-1080.DOI: 10.11949/0438-1157.20240173
• 综述与专论 • 下一篇
收稿日期:
2024-02-06
修回日期:
2024-03-23
出版日期:
2024-04-25
发布日期:
2024-06-06
通讯作者:
赵亮
作者简介:
李俊(1995—),男,博士研究生,2021310209@student.cup.edu.cn
基金资助:
Jun LI(), Liang ZHAO(), Jinsen GAO, Chunming XU
Received:
2024-02-06
Revised:
2024-03-23
Online:
2024-04-25
Published:
2024-06-06
Contact:
Liang ZHAO
摘要:
解决传统燃料过剩、开发绿色高效低耗的油品加工技术是双碳背景下的必然趋势。发展分子炼油理念下的变革性加工技术,实现从“馏分加工”到“组分加工”,是节能降耗、物尽其用的重要思路,其中组分的高效分离是实践分子炼油理念、实现精细化加工的重中之重。详细介绍了我国各种馏分油的化学组成的分布规律以及现有溶剂萃取技术分离芳烃、烷烃和杂原子化合物等组分的研究现状,讨论了各类油品由于组成差异而导致不同的分离难点,旨在提出未来研究的切入点和有价值的研究方向。
中图分类号:
李俊, 赵亮, 高金森, 徐春明. 不同馏分油分级分质加工中萃取技术研究进展[J]. 化工学报, 2024, 75(4): 1065-1080.
Jun LI, Liang ZHAO, Jinsen GAO, Chunming XU. Research progress of extraction technology in processing different distillate by grade and composition[J]. CIESC Journal, 2024, 75(4): 1065-1080.
项 目 | Udex | Sulfolane | IFP | Arosolvan | Formex | Morphylane |
---|---|---|---|---|---|---|
溶剂 | 甘醇类 | SUL | DMSO | NMP | NFM | NFM |
塔类型 | 筛板塔 | 筛板塔/转盘塔 | 转盘塔 | 混合沉降槽 | — | 填料塔 |
操作条件 | ||||||
温度/℃ | 120~140 | 70~99 | 30 | 30~60 | 40~70 | 40~80 |
压力/MPa | 0.7~0.8 | 0.3~0.5 | 0.9 | 常压 | — | 0.3 |
剂油比 | 10.0~17.0 | 2.0~3.5 | 7.0~8.0 | 7.7 | 4.0~6.0 | 0.8~1.0 |
回流比 | 1.0~1.4 | 0.4~0.6 | 0.32 | 0.8~1.2 | — | — |
溶剂含水率/%(体积分数) | 8.0~10.0 | 0.5~0.7 | 9.0 | 45(二甘醇) | 5.0 | — |
芳烃回收率 | ||||||
苯/%(质量分数) | 99.5 | 99.9 | 99.9 | 99.9 | 99.9 | 99.9 |
甲苯/%(质量分数) | 98.0 | 99.0 | 98.0 | 99.0 | 99.0 | 99.5 |
二甲苯/%(质量分数) | 95.0 | 96.0 | 96.0 | 96.0 | 97.0 | 97.0 |
C9芳烃/%(质量分数) | 65.0~96.0 | >76.0 | >50.0 | >60.0 | — | — |
消耗 | ||||||
电/(kWh) | 12.0~36.0 | 6.3 | 9.43 | 11.0 | 10.0~13.0 | — |
水/t | 41.0~100.0 | 31.0 | 26.0 | 30.0 | 8.0~10.0 | — |
蒸汽/t | 1.4~1.9 | 0.8 | 2.25 | 0.8 | 0.65~0.85 | — |
溶剂/kg | 0.55 | 0.13 | 0.14 | 0.10 | 0.10 | 0.09 |
表1 几种芳烃抽提技术的分离特点
Table 1 Separation characteristics of several aromatics extraction techniques
项 目 | Udex | Sulfolane | IFP | Arosolvan | Formex | Morphylane |
---|---|---|---|---|---|---|
溶剂 | 甘醇类 | SUL | DMSO | NMP | NFM | NFM |
塔类型 | 筛板塔 | 筛板塔/转盘塔 | 转盘塔 | 混合沉降槽 | — | 填料塔 |
操作条件 | ||||||
温度/℃ | 120~140 | 70~99 | 30 | 30~60 | 40~70 | 40~80 |
压力/MPa | 0.7~0.8 | 0.3~0.5 | 0.9 | 常压 | — | 0.3 |
剂油比 | 10.0~17.0 | 2.0~3.5 | 7.0~8.0 | 7.7 | 4.0~6.0 | 0.8~1.0 |
回流比 | 1.0~1.4 | 0.4~0.6 | 0.32 | 0.8~1.2 | — | — |
溶剂含水率/%(体积分数) | 8.0~10.0 | 0.5~0.7 | 9.0 | 45(二甘醇) | 5.0 | — |
芳烃回收率 | ||||||
苯/%(质量分数) | 99.5 | 99.9 | 99.9 | 99.9 | 99.9 | 99.9 |
甲苯/%(质量分数) | 98.0 | 99.0 | 98.0 | 99.0 | 99.0 | 99.5 |
二甲苯/%(质量分数) | 95.0 | 96.0 | 96.0 | 96.0 | 97.0 | 97.0 |
C9芳烃/%(质量分数) | 65.0~96.0 | >76.0 | >50.0 | >60.0 | — | — |
消耗 | ||||||
电/(kWh) | 12.0~36.0 | 6.3 | 9.43 | 11.0 | 10.0~13.0 | — |
水/t | 41.0~100.0 | 31.0 | 26.0 | 30.0 | 8.0~10.0 | — |
蒸汽/t | 1.4~1.9 | 0.8 | 2.25 | 0.8 | 0.65~0.85 | — |
溶剂/kg | 0.55 | 0.13 | 0.14 | 0.10 | 0.10 | 0.09 |
装置所属单位 | 设计规模/(万吨/年) | 采用技术 | 装置所属单位 | 设计规模/(万吨/年) | 采用技术 |
---|---|---|---|---|---|
大连石化 | 100 | 美国GT-BTX | 中国石油大连分公司 | 15 | 中国SED |
独山子石化 | 100 | 美国GT-BTX | 福佳大化 | 100 | 中国SED |
青岛丽东 | 70 | 美国GT-BTX | 四川石化 | 90 | 中国SED |
广西石化 | 100 | 美国/荷兰 Sulfolane | 中海油惠州 | 80 | 中国SED |
乌鲁木齐石化 | 70 | 中国SUPER-SAE-Ⅱ | 福建炼化 | 78 | 中国SED |
辽阳石化 | 60 | 中国SUPER-SAE-Ⅱ | 镇海炼化 | 70 | 中国SED |
抚顺石化 | 56 | 中国SUPER-SAE-Ⅱ | 上海赛科公司 | 55 | 中国SED |
兰州石化 | 40 | 中国SUPER-SAE-Ⅱ | 茂名石化 | 46 | 中国SED |
大庆石化 | 40 | 中国SUPER-SAE-Ⅱ | 齐鲁石化 | 45 | 中国SED |
华锦石化 | 22 | 中国SUPER-SAE-Ⅱ | 和邦化学 | 25 | 中国SED |
哈尔滨石化 | 12 | 中国SUPER-SAE-Ⅱ | 青岛大炼油 | 20 | 中国SED |
宁夏石化 | 10 | 中国SUPER-SAE-Ⅱ |
表2 国内部分芳烃分离装置规模
Table 2 Scale of several aromatics separation plants in China
装置所属单位 | 设计规模/(万吨/年) | 采用技术 | 装置所属单位 | 设计规模/(万吨/年) | 采用技术 |
---|---|---|---|---|---|
大连石化 | 100 | 美国GT-BTX | 中国石油大连分公司 | 15 | 中国SED |
独山子石化 | 100 | 美国GT-BTX | 福佳大化 | 100 | 中国SED |
青岛丽东 | 70 | 美国GT-BTX | 四川石化 | 90 | 中国SED |
广西石化 | 100 | 美国/荷兰 Sulfolane | 中海油惠州 | 80 | 中国SED |
乌鲁木齐石化 | 70 | 中国SUPER-SAE-Ⅱ | 福建炼化 | 78 | 中国SED |
辽阳石化 | 60 | 中国SUPER-SAE-Ⅱ | 镇海炼化 | 70 | 中国SED |
抚顺石化 | 56 | 中国SUPER-SAE-Ⅱ | 上海赛科公司 | 55 | 中国SED |
兰州石化 | 40 | 中国SUPER-SAE-Ⅱ | 茂名石化 | 46 | 中国SED |
大庆石化 | 40 | 中国SUPER-SAE-Ⅱ | 齐鲁石化 | 45 | 中国SED |
华锦石化 | 22 | 中国SUPER-SAE-Ⅱ | 和邦化学 | 25 | 中国SED |
哈尔滨石化 | 12 | 中国SUPER-SAE-Ⅱ | 青岛大炼油 | 20 | 中国SED |
宁夏石化 | 10 | 中国SUPER-SAE-Ⅱ |
36 | Li W S, Wang C X, Liu J, et al. Research progresses in composition and processing technologies of Chinese shale oil[J]. Applied Chemical Industry, 2015, 44(7): 1318-1322. |
37 | 袁士义, 雷征东, 李军诗, 等. 陆相页岩油开发技术进展及规模效益开发对策思考[J]. 中国石油大学学报 (自然科学版), 2023, 47(5): 13-24. |
Yuan S Y, Lei Z D, Li J S, et al. Progress in technology for the development of continental shale oil and thoughts on the development of scale benefits and strategies[J]. Journal of China University of Petroleum (Edition of Natural Science), 2023, 47(5): 13-24. | |
38 | 赵宝超, 袁帅, 王琦元. 我国页岩油组成及加工技术的研究进展[J]. 化工设计通讯, 2018, 44(1): 249-250. |
Zhao B C, Yuan S, Wang Q Y. Research progress of shale oil composition and processing technology in China[J]. Chemical Engineering Design Communications, 2018, 44(1): 249-250. | |
39 | Li Y J, Dong S L, Wang L L, et al. The extraction of aromatics using N-methylpyrrolidone: liquid-liquid equilibrium determination and mechanism exploration[J]. Chinese Journal of Chemical Engineering, 2023, 64: 117-127. |
40 | Shi J J, Wu X J, Yu G J, et al. Study of aromatic extraction from light cycle oil from the viewpoint of industrial applications[J]. Fuel, 2024, 357: 130023. |
41 | Shekaari H, Zafarani-Moattar M T, Mohammadi B. Effective extraction of benzene and thiophene by novel deep eutectic solvents from hexane/aromatic mixture at different temperatures[J]. Fluid Phase Equilibria, 2019, 484: 38-52. |
42 | 戴贵容, 唐晓东, 杨利斌, 等. 催化重汽油萃取脱芳溶剂的优化研究[J]. 应用化工, 2022, 51(S1): 101-105. |
Dai G R, Tang X D, Yang L B, et al. Study on optimization of extraction dearomatization solvent for catalytic heavy gasoline[J]. Applied Chemical Industry, 2022, 51(S1): 101-105. | |
43 | 孙博, 朱丽娜, 金书含, 等. 石脑油萃取法脱芳烃的研究进展[J]. 精细石油化工进展, 2021, 22(5): 41-46. |
Sun B, Zhu L N, Jin S H, et al. Research progress of naphtha extraction dearomatization[J]. Advances in Fine Petrochemicals, 2021, 22(5): 41-46. | |
44 | 疏其朋, 李佳书, 李进龙. 石脑油液液萃取脱环烷烃和芳烃溶剂的筛选[J]. 石油化工, 2019, 48(4): 362-366. |
Shu Q P, Li J S, Li J L. Selection of solvent for removing cycloalkane and aromatic hydrocarbon from naphtha by liquid-liquid extraction[J]. Petrochemical Technology, 2019, 48(4): 362-366. | |
45 | Mahmoudi J, Lotfollahi M N. Extraction of benzene from a narrow cut of naphtha via liquid-liquid extraction using pure-sulfolane and 2-propanol-sulfolane-mixed solvents[J]. Korean Journal of Chemical Engineering, 2010, 27(1): 214-217. |
46 | 史云鹤, 李长明, 周金波, 等. 石脑油萃取脱芳烃技术研究进展[J]. 化工进展, 2015, 34(2): 360-369. |
Shi Y H, Li C M, Zhou J B, et al. Research advances in extraction technology for dearomatization of naphtha[J]. Chemical Industry and Engineering Progress, 2015, 34(2): 360-369. | |
47 | 史云鹤. 石脑油脱芳烃工艺技术研究[D]. 兰州: 兰州交通大学, 2015. |
Shi Y H. Research on naphtha dearomatization process technology[D]. Lanzhou: Lanzhou Jiatong University, 2015. | |
48 | 张琳娜, 李冬, 朱永红, 等. 煤基石脑油萃取脱芳制备溶剂油工艺研究[J]. 精细化工, 2016, 33(6): 703-708. |
Zhang L N, Li D, Zhu Y H, et al. Study on the liquid-liquid extraction aromatic process for the coal-derived naphtha to produce solvent oil[J]. Fine Chemicals, 2016, 33(6): 703-708. | |
49 | 米多. 芳烃抽提技术进展[J]. 化学工业, 2009, 27(8): 34-37, 45. |
Mi D. Recent progress of extraction technologies for aromatics[J]. Chemical Industry, 2009, 27(8): 34-37, 45. | |
50 | 施志国, 张翠金. 芳烃抽提技术研究进展[J]. 化肥设计, 2018, 56(2): 4-8. |
1 | 丁凯, 刘名瑞, 王佩弦, 等. 船用燃料油现状及未来发展分析[J]. 当代化工, 2023, 52(6): 1453-1457. |
Ding K, Liu M R, Wang P X, et al. Analysis on current situation and future development of marine fuel oil[J]. Contemporary Chemical Industry, 2023, 52(6): 1453-1457. | |
2 | 王澈. 我国芳烃产业链现状与发展趋势[J]. 当代石油石化, 2023, 31(10): 16-21, 49. |
Wang C. Status and development trend of China's aromatics industry chain[J]. Petroleum & Petrochemical Today, 2023, 31(10): 16-21, 49. | |
3 | 王鹏. 国内首套ORP除烯烃装置的工艺及应用研究[J]. 现代化工, 2024, 44(1): 230-233. |
Wang P. Research on process and application of China's first ORP olefin removal unit[J]. Modern Chemical Industry, 2024, 44(1): 230-233. | |
4 | Sholl D S, Lively R P. Seven chemical separations to change the world[J]. Nature, 2016, 532(7600): 435-437. |
5 | 许江, 程中克, 王小强, 等. 不同种类石脑油的裂解产物分布及收率对比分析[J]. 石油与天然气化工, 2019, 48(3): 23-27. |
Xu J, Cheng Z K, Wang X Q, et al. Comparative analysis on distribution and yield of pyrolysis products of different kinds of naphtha[J]. Chemical Engineering of Oil & Gas, 2019, 48(3): 23-27. | |
6 | 梁嘉麟, 林海, 曾兴业. 石脑油烃组成与主要裂解产物收率的关系[J]. 石化技术, 2021, 28(12): 18-19, 7. |
Liang J L, Lin H, Zeng X Y. Relationship between the composition of naphtha hydrocarbon and the yield of main cracking products[J]. Petrochemical Industry Technology, 2021, 28(12): 18-19, 7. | |
7 | 孔令健. 提高石脑油综合利用率及经济性的探讨[J]. 石油化工技术与经济, 2021, 37(6): 15-20. |
50 | Shi Z G, Zhang C J. Research progress of aromatic extraction[J]. Chemical Fertilizer Design, 2018, 56(2): 4-8. |
51 | 陈利维, 张天嵌. 芳烃抽提技术研究进展和应用现状[J]. 石油化工应用, 2017, 36(1): 7-10. |
Chen L W, Zhang T Q. Research progress and application status of aromatics extraction technology[J]. Petrochemical Industry Application, 2017, 36(1): 7-10. | |
52 | 谢雅迪. 芳烃分离技术应用及进展[J]. 炼油与化工, 2023, 34(1): 7-10. |
Xie Y D. Application and progress of aromatic separation technology[J]. Refining and Chemical Industry, 2023, 34(1): 7-10. | |
53 | 张志良, 肖庆伟. SED芳烃抽提工艺的工业应用[J]. 石油炼制与化工, 2008, 39(4): 41-45. |
Zhang Z L, Xiao Q W. Industry application of SED aromatics extraction technology[J]. Petroleum Processing and Petrochemicals, 2008, 39(4): 41-45. | |
54 | 屈坡. 40万吨/年芳烃抽提工艺技术路线的比选[D]. 兰州: 兰州大学, 2013. |
Qu P. The compare choose of the four hundred thousand tons/year aromatics extraction technology routes[D]. Lanzhou: Lanzhou University, 2013. | |
55 | 高金森, 赵亮, 郝天臻, 等. 一种催化裂化汽油脱硫的耦合方法: 201510642456.2[P]. 2017-07-11. |
Gao J S, Zhao L, Hao T Z, et al. A coupling method for desulfurization of FCC gasoline: 201510642456.2[P]. 2017-07-11. | |
56 | 高金森, 赵亮, 郝天臻, 等. 一种汽油脱硫方法: 201510643054.4[P]. 2017-08-08. |
Gao J S, Zhao L, Hao T Z, et al. A method for desulfurization of gasoline: 201510643054.4[P]. 2017-08-08. | |
7 | Kong L J. Discussion on improving the comprehensive utilization rate and economy of naphtha[J]. Technology & Economics in Petrochemicals, 2021, 37(6): 15-20. |
8 | 谭广飞. 乙烯装置石脑油原料提质优化模拟[J]. 当代石油石化, 2021, 29(10): 21-26. |
Tan G F. Optimization simulation of naphtha feedstock upgrading in ethylene plant[J]. Petroleum & Petrochemical Today, 2021, 29(10): 21-26. | |
9 | 王小强, 蔡小霞, 景媛媛, 等. 蒸汽裂解生产乙烯的原料优化选择与配置[J]. 石油与天然气化工, 2024, 53(1): 47-53. |
Wang X Q, Cai X X, Jing Y Y, et al. Optimal selection and configuration of feedstock for ethylene by steam cracking[J]. Chemical Engineering of Oil & Gas, 2024, 53(1): 47-53. | |
10 | 李涛. 乙烯生产原料的发展状况分析[J]. 石油化工技术经济, 2005, 21(5): 12-17. |
Li T. Analysis on the development of raw material for ethylene production[J]. Techno-economics in Petrochemicals, 2005, 21(5): 12-17. | |
11 | 陈香生. 重油直接接触裂解制乙烯工艺的工业化前景[J]. 炼油设计, 2000, 30(6): 1-4. |
Chen X S. Commercial prospect of heavy oil contact cracking (HCC) for ethylene production[J]. Petroleum Refinery Engineering, 2000, 30(6): 1-4. | |
12 | 张方方, 张新宽, 于中伟. 提高石脑油综合利用效率的措施及优化方案[J]. 石油炼制与化工, 2021, 52(5): 16-21. |
Zhang F F, Zhang X K, Yu Z W. Measures and optimization scheme for improving comprehensive utilization efficiency of naphtha[J]. Petroleum Processing and Petrochemicals, 2021, 52(5): 16-21. | |
13 | 林堂茂, 刘小多, 孙雪婷. 石化行业面对“双碳”目标的应对措施[J]. 现代化工, 2023, 43(3): 1-5. |
Lin T M, Liu X D, Sun X T. Countermeasures of petrochemical industry for carbon peak and neutrality goals[J]. Modern Chemical Industry, 2023, 43(3): 1-5. | |
57 | 唐晓东, 杨谨, 仝保田, 等. 催化裂化柴油萃取脱芳烃技术研究[J]. 石油炼制与化工, 2020, 51(8): 12-18. |
Tang X D, Yang J, Tong B T, et al. Study on aromatics removal from FCC diesel by extraction[J]. Petroleum Processing and Petrochemicals, 2020, 51(8): 12-18. | |
58 | 谢琼玉, 徐斌. 催化裂化柴油溶剂抽提降芳烃工艺技术研究[J]. 石油炼制与化工, 2012, 43(4): 10-14. |
Xie Q Y, Xu B. Research on the solvent extraction of aromatic hydrocarbon from FCC diesel fractions[J]. Petroleum Processing and Petrochemicals, 2012, 43(4): 10-14. | |
59 | 边超. 催化裂化柴油抽提芳烃工艺研究[D]. 天津: 河北工业大学, 2016. |
Bian C. The study on aromatics extraction process of FCC disesel oil[D]. Tianjin: Hebei University of Technology, 2016. | |
60 | Li H, Guo J J, Zhang Y H, et al. Influence of solvent structure on the extraction of aromatics from FCC diesel and computational thermodynamics study[J]. Fuel Processing Technology, 2021, 224: 107021. |
61 | Li H, Guo J J, Zhang Y H, et al. Research on separation of aromatics from FCC diesel using organic solvent: a combination of experiments and quantum chemical calculations[J]. Fuel, 2022, 308: 121982. |
62 | 王福颖. 萃取溶剂与直馏柴油关键组分的相互作用机制研究[D]. 北京: 中国石油大学 (北京), 2023. |
Wang F Y. Study on the interaction mechanism between extraction solvent and key components of straight-run diesel oil[D]. Beijing: China University of Petroleum, 2023. | |
63 | Yang H W, Yao T, Guo L, et al. Structural features of Qitaihe high-temperature coal tar by sequentially fractional extraction[J]. Energy Sources Part A: Recovery, Utilization, and Environmental Effects, 2018, 40(5): 493-500. |
64 | Feng Y, Sun Y D, Zhang S. Composition analysis of aromatics-rich extraction oil from FCC slurry[J]. Journal of Fuel Chemistry and Technology, 2021, 49(6): 766-770. |
14 | 张力, 刘键, 王琰. FCC汽油窄馏分族组成及辛烷值与硫含量分布规律研究[J]. 炼油技术与工程, 2023, 53(6): 13-16, 35. |
Zhang L, Liu J, Wang Y. Study on the group composition, octane number and sulfur content distribution of narrow fraction of FCC gasoline[J]. Petroleum Refinery Engineering, 2023, 53(6): 13-16, 35. | |
15 | 张登前, 唐文成, 习远兵, 等. 溶剂抽提-选择性加氢脱硫组合技术的开发及工业应用[J]. 石油炼制与化工, 2019, 50(1): 37-41. |
Zhang D Q, Tang W C, Xi Y B, et al. Development and industrial application of solvent extraction-selective hydrodesulfurization combination technology[J]. Petroleum Processing and Petrochemicals, 2019, 50(1): 37-41. | |
16 | 刘建民, 田勇震, 宋颖. 催化裂化汽油脱硫技术概述与对比分析[J]. 辽宁化工, 2023, 52(4): 533-538. |
Liu J M, Tian Y Z, Song Y. Overview and comparative analysis of catalytic cracking gasoline desulfurization technology[J]. Liaoning Chemical Industry, 2023, 52(4): 533-538. | |
17 | 于楠, 孙仁金, 孙悦, 等. “双碳”目标下成品油行业发展现状与思考[J]. 现代化工, 2022, 42(10): 5-10. |
Yu N, Sun R J, Sun Y, et al. Development situation and consideration of refined oil industry under “peak carbon dioxide emissions and carbon neutrality” targets[J]. Modern Chemical Industry, 2022, 42(10): 5-10. | |
18 | 胡俊利, 王高杰. 不同汽油馏分加工路线选择[J]. 广州化工, 2023, 51(16): 27-30. |
Hu J L, Wang G J. Route selection of different gasoline fraction[J]. Guangzhou Chemical Industry, 2023, 51(16): 27-30. | |
19 | 王定博. 催化裂化 (FCC) 轻汽油综合利用[J]. 工业催化, 2022, 30(9): 14-20. |
Wang D B. Utilization of FCC light gasoline[J]. Industrial Catalysis, 2022, 30(9): 14-20. | |
20 | 张诗晓, 魏晓丽, 张久顺. 催化裂化汽油辛烷值关键组分的反应特性[J]. 化学工程, 2022, 50(6): 67-72. |
Zhang S X, Wei X L, Zhang J S. Reaction characteristics of key components of FCC gasoline octane number[J]. Chemical Engineering (China), 2022, 50(6): 67-72. | |
21 | 王佳. 柴油烃类组成分子水平预测研究[D]. 北京: 石油化工科学研究院, 2015. |
Wang J. Study on predicting composition of diesel oil hydrocarbon in molecular level[D]. Beijing: Research Institute of Petroleum Processing, 2015. | |
22 | 张锐, 鞠雪艳, 李云, 等. 催化裂化柴油加氢处理生产高密度喷气燃料的研究[J]. 石油炼制与化工, 2022, 53(1): 46-52. |
Zhang R, Ju X Y, Li Y, et al. Development of the LCO hydrotreating technology to produce high-density jet fuel[J]. Petroleum Processing and Petrochemicals, 2022, 53(1): 46-52. | |
23 | 鞠雪艳, 张锐, 习远兵, 等. 催化裂化柴油加氢生产高密度喷气燃料过程研究[J]. 石油炼制与化工, 2022, 53(6): 6-11. |
Ju X Y, Zhang R, Xi Y B, et al. Study on the process of high density jet fuel production from FCC LCO[J]. Petroleum Processing and Petrochemicals, 2022, 53(6): 6-11. | |
24 | 徐先荣, 毛安国. 催化裂化柴油轻重馏分的裂化性能研究[J]. 炼油技术与工程, 2007, 37(6): 1-5. |
Xu X R, Mao A G. Study on the catalytic cracking performance of FCC LCO[J]. Petroleum Refinery Engineering, 2007, 37(6): 1-5. | |
25 | 柯晓明, 王丽敏. 中国第五阶段汽柴油质量升级路线图分析[J]. 国际石油经济, 2016, 24(5): 21-27. |
Ke X M, Wang L M. Analysis of the fifth stage of gasoline and diesel quality upgrade roadmap in China[J]. International Petroleum Economics, 2016, 24(5): 21-27. | |
26 | 孔劲媛, 罗艳托, 胡爱君. 中国成品油市场2022年回顾与2023年供需预测[J]. 国际石油经济, 2023, 31(4): 59-66. |
Kong J Y, Luo Y T, Hu A J. Review of China's refined oil market in 2022 and forecast of supply and demand in 2023[J]. International Petroleum Economics, 2023, 31(4): 59-66. | |
27 | 魏贤勇, 宗志敏, 赵炜, 等. 从高温煤焦油中分离缩合芳香族化合物的基础研究和技术开发[J]. 石油学报 (石油加工), 2022, 38(3): 500-511. |
Wei X Y, Zong Z M, Zhao W, et al. Basic research and technology development for the separation of condensed aromatics from high-temperature coal tar[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2022, 38(3): 500-511. | |
28 | 汤钟情. 神木煤焦油中酚类化合物的分布及重油馏分分析利用[D]. 北京: 中国石油大学 (北京), 2022. |
Tang Z Q. Distribution of phenolic compounds in Shenmu coal tar and analysis and utilization of heavy oil fractions[D]. Beijing: China University of Petroleum, 2022. | |
29 | 吴玉起, 钟梅, 亚力昆江·吐尔逊. 低温煤焦油沥青组分组成与结构分析[J]. 洁净煤技术, 2023, 29(7): 209-217. |
Wu Y Q, Zhong M, Yalkunjan T. Composition and structure analysis of the components from low-temperature coal tar pitch[J]. Clean Coal Technology, 2023, 29(7): 209-217. | |
30 | 白妮, 王爱民, 王金玺, 等. 陕北中低温煤焦油全组成的GC/MS分析[J]. 化学工程与装备, 2022(5): 232-233. |
Bai N, Wang A M, Wang J X, et al. GC/MS analysis of total composition of medium and low temperature coal tar in northern Shaanxi[J]. Chemical Engineering & Equipment, 2022 ( 5 ) : 232-233. | |
31 | 胡冬冬. 高温煤焦油分级萃取及其制备煤基喷气燃料研究[D]. 马鞍山: 安徽工业大学, 2018. |
Hu D D. Research on fractional extraction of high temperature coal tar for preparing coal-based jet fuels[D]. Ma'anshan: Anhui University of Technology, 2018. | |
32 | 葛庆, 张军, 廖俊, 等. 煤焦油加氢技术研究进展[J]. 能源化工, 2023, 44(5): 16-21. |
Ge Q, Zhang J, Liao J, et al. Research progress of coal tar hydrogenation technology[J]. Energy Chemical Industry, 2023, 44(5): 16-21. | |
33 | 闫厚春, 范雯阳, 崔鹏, 等. 中低温煤焦油的加工利用现状[J]. 应用化工, 2019, 48(8): 1904-1907. |
Yan H C, Fan W Y, Cui P, et al. Current status of processing and utilization of medium and low temperature coal tar[J]. Applied Chemical Industry, 2019, 48(8): 1904-1907. | |
34 | 崔达. 页岩油组成结构的分子表征与热演化特性研究[D]. 吉林: 东北电力大学, 2019. |
Cui D. Molecular characterization and thermal evolution features of shale oil composition and structure[D]. Jilin: Northeast Dianli University, 2019. | |
35 | 王擎, 纪托, 迟铭书, 等. 汪清页岩油组成结构的谱学分析[J]. 石油学报 (石油加工), 2016, 32(5): 1045-1054. |
Wang Q, Ji T, Chi M S, et al. Spectroscopy analysis on structure of Wangqing shale oil[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2016, 32(5): 1045-1054. | |
36 | 李文深, 王彩旭, 刘洁, 等. 我国页岩油组成及加工技术的研究进展[J]. 应用化工, 2015, 44(7): 1318-1322. |
65 | 曹玉骁. 催化裂化油浆的分离及相平衡预测[D]. 北京: 中国石油大学 (北京), 2021. |
Cao Y X. Separation of chemically cracked oil slurry and prediction of phase equilibrium[D]. Beijing: China University of Petroleum, 2021. | |
66 | 石俊峰, 曹祖宾, 王海超, 等. 催化裂化油浆糠醛精制工艺研究[J]. 化学与粘合, 2010, 32(1): 68-71. |
Shi J F, Cao Z B, Wang H C, et al. Studies on processing of FCC slurry furfural refining[J]. Chemistry and Adhesion, 2010, 32(1): 68-71. | |
67 | 黄传峰, 杨涛, 刘亚青, 等. 萃取剂对催化油浆抽提分离的影响研究[J]. 当代化工, 2023, 52(6): 1341-1344. |
Huang C F, Yang T, Liu Y Q, et al. Influence of extractant on FCC slurry extraction and separation process[J]. Contemporary Chemical Industry, 2023, 52(6): 1341-1344. | |
68 | Zhu M H, Liu Y D, Wang L T, et al. Selective extraction of aromatics from residual oil with subcritical water[J]. Chemical Engineering Research and Design, 2024, 202: 444-454. |
69 | 杨涛, 张生娟, 王亦颿, 等. 溶剂萃取在催化油浆组分分离中应用的研究进展[J]. 化学工程师, 2022, 36(8): 77-80, 110. |
Yang T, Zhang S J, Wang Y F, et al. Research progress of solvent extraction in the separation of catalytic oil slurry components[J]. Chemical Engineer, 2022, 36(8): 77-80, 110. | |
70 | 陆俊凤, 孙怀宇, 王艳磊, 等. 离子液体界面极化及其调控氢键性质的分子机理[J]. 化工学报, 2023, 74(9): 3665-3680. |
Lu J F, Sun H Y, Wang Y L, et al. Molecular understanding of interfacial polarization and its effect on ionic liquid hydrogen bonds[J]. CIESC Journal, 2023, 74(9): 3665-3680. | |
71 | 殷梦凡, 唐政, 张睿, 等. 离子液体液液萃取分离正辛烷/邻二甲苯[J]. 化工学报, 2021, 72(12): 6282-6290. |
Yin M F, Tang Z, Zhang R, et al. Separation of n-octane and o-xylene by liquid-liquid extraction with ionic liquids[J]. CIESC Journal, 2021, 72(12): 6282-6290. | |
72 | 吴小佳. 离子液体基低共熔溶剂用于萃取分离芳烃烷烃的基础研究[D]. 北京: 北京化工大学, 2022. |
Wu X J. Extraction of aromatic hydrocarbons from alkanes using ionic liquid-based deep eutectic solvents[D]. Beijing: Beijing University of Chemical Technology, 2022. | |
73 | Kim M J, Shin S H, Kim Y J, et al. Role of alkyl group in the aromatic extraction using pyridinium-based ionic liquids[J]. Journal of Physical Chemistry B, 2013, 117(47): 14827-14834. |
74 | Al-Rashed O A, Fahim M A, Shaaban M. Prediction and measurement of phase equilibria for the extraction of BTX from naphtha reformate using BMIMPF6 ionic liquid[J]. Fluid Phase Equilibria, 2014, 363: 248-262. |
75 | 童浩. 离子液体萃取分离芳烃/脂肪烃的研究[D]. 北京: 中国石油大学 (北京), 2016. |
Tong H. Separation of aromatic and aliphatic hydrocarborn by ionic liquids[D]. Beijing: China University of Petroleum, 2016. | |
76 | 徐春明, 殷梦凡, 童浩, 等. 离子液体萃取分离石脑油中芳烃的理论计算与试验验证[J]. 中国石油大学学报(自然科学版), 2023, 47(5): 138-145. |
Xu C M, Yin M F, Tong H, et al. Theoretical calculation and experimental verification of aromatics extraction from naphtha by ionic liquids[J]. Journal of China University of Petroleum (Edition of Natural Science), 2023, 47(5): 138-145. | |
77 | 李国选. 离子液体/低共熔溶剂分离过程强化与预测型分子热力学基础[D]. 北京: 北京化工大学, 2023. |
Li G X. Separation process intensification of ionic liquids/deep eutectic solvents and fundamentals of predictive molecular thermodynamics[D]. Beijing: Beijing University of Chemical Technology, 2023. | |
78 | 高腾飞, 李国选, 雷志刚. 从催化裂化柴油中分离联苯的溶剂筛选:实验和计算热力学[J]. 化工学报, 2022, 73(12): 5314-5323. |
Gao T F, Li G X, Lei Z G. Solvents selection for separation of biphenyl from FCC diesel: experimental and computational thermodynamics[J]. CIESC Journal, 2022, 73(12): 5314-5323. | |
79 | 李欣宇. 含氮杂环类功能化溶剂萃取分离柴油中芳烃/烷烃的研究[D]. 北京: 北京化工大学, 2023. |
Li X Y. Extraction separation of aromatics/alkanes from diesel fuel by nitrogen-containing heterocyclic functionalized solvents[D]. Beijing: Beijing University of Chemical Technology, 2023. | |
80 | Li X Y, Wu X J, Yu H, et al. Highly selective extraction of aromatics from diesel fuel using dual N-containing heterocyclic deep eutectic solvents[J]. Chemical Engineering Journal, 2023, 476: 146618. |
81 | 康晓丽, 孙磊, 吕涯, 等. 选择性萃取用于改善高含蜡柴油馏分低温流动性能的研究[J]. 石油炼制与化工, 2006, 37(12): 17-22. |
Kang X L, Sun L, Lü Y, et al. Improving the low-temperature fluidity of light gas oil with high wax content by solvent extraction[J]. Petroleum Processing and Petrochemicals, 2006, 37(12): 17-22. | |
82 | Bharathiraja R, Ramkumar T, Selvakumar M, et al. Thermal characteristics enhancement of paraffin wax phase change material (PCM) for thermal storage applications[J]. Renewable Energy, 2024, 222: 119986. |
83 | 郭守敬, 白天忠, 梁雪美, 等. 润滑油基础油脱蜡技术研究进展[J]. 当代化工, 2022, 51(6): 1496-1499, 1508. |
Guo S J, Bai T Z, Liang X M, et al. Research progress of lubricant base oil dewaxing technology[J]. Contemporary Chemical Industry, 2022, 51(6): 1496-1499, 1508. | |
84 | 吕涯, 陈淑芬. 热力学模型预测低温下柴油中正构烷烃的析出[J]. 化工进展, 2007, 26(12): 1743-1748. |
Lü Y, Chen S F. Prediction of the settling of n-alkane in diesel by thermodynamic model[J]. Chemical Industry and Engineering Progress, 2007, 26(12): 1743-1748. | |
85 | 吕涯, 孙磊, 康晓丽. 选择性溶剂萃取生产低凝柴油的溶剂筛选和溶剂选择性的表征[J]. 化学世界, 2008, 49(2): 93-97, 106. |
Lü Y, Sun L, Kang X L. Screening of solvent and characterization of selectivity in solvent extraction for production of low freezing point diesel fuel[J]. Chemical World, 2008, 49(2): 93-97, 106. | |
86 | Lü Y, Shi J J, Sun L. Investigation of the selection of extraction solvent for extracting the n-alkane from diesel by means of solubility parameters theory[J]. Journal of Fuel Chemistry and Technology, 2008, 36(3): 297-301. |
87 | 吕涯, 郭婷. 两维新溶解度参数和柴油脱蜡溶剂的选择[J]. 化工学报, 2009, 60(12): 2963-2968. |
Lv Y, Guo T. Two-dimensional solubility parameters and dewaxing solvent selection for diesels[J]. CIESC Journal, 2009, 60(12): 2963-2968. | |
88 | 吕涯, 闫凯, 孙磊. 应用三维溶解度参数球形模型研究柴油中正构烷烃的分离[J]. 华东理工大学学报 (自然科学版), 2010, 36(6): 755-759. |
Lyu Y, Yan K, Sun L. n-Alkanes deposition from diesels by three-dimensional solubility parameters sphere model[J]. Journal of East China University of Science and Technology (Natural Science Edition), 2010, 36(6): 755-759. | |
89 | Wang Y J, Zhao L, Gao M S, et al. Investigation of solvent dewaxing of straight-run diesel: combination of quantum chemical calculations and experimental condition optimization[J]. Fuel, 2024, 358: 130135. |
90 | Li J, Zong Z M, Liu G H, et al. Application of a dual-solvent method in separating paraffin from a shale oil: a combined experimental and DFT study[J]. Industrial & Engineering Chemistry Research, 2019, 58(37): 17507-17513. |
91 | 刘晶, 杨基和, 周永生, 等. 从直馏汽油分级分离正庚烷及甲基环己烷[J]. 常州大学学报 (自然科学版), 2010, 22(3): 34-37. |
Liu J, Yang J H, Zhou Y S, et al. Study of classification separation of n-heptane and methylcyclohexane from the distillate oil[J]. Journal of Changzhou University (Natural Science Edition), 2010, 22(3): 34-37. | |
92 | 张利利. 正己烷-甲基环戊烷萃取精馏分离的研究[D]. 东营: 中国石油大学 (华东), 2020. |
Zhang L L. Study on separation of n-hexane-methylcyclopentane by extractive distillation[D]. Dongying: China University of Petroleum, 2020. | |
93 | 廖晓星, 伍志春, 陈家镛. 混合溶剂抽提甲基环己烷的溶剂性能[J]. 化工冶金, 1999(3): 235-240. |
Liao X X, Wu Z C, Chen J Y. Properlies of mixed solvents for extraction of methyl cyclohexane[J]. Engineering Chemistry & Metallurgy, 1999(3): 235-240. | |
94 | 曹明月. 石脑油中环烷烃组分的萃取分离研究[D]. 上海: 华东理工大学, 2019. |
Cao M Y. Extraction separation of naphthenes from naphtha[D]. Shanghai: East China University of Science and Technology, 2019. | |
95 | Zhang W L, Hou K H, Mi G J, et al. Liquid–liquid equilibria of ternary systems sulfide + octane + solvents at different temperatures[J]. Journal of Chemical & Engineering Data, 2008, 53(10): 2275-2281. |
96 | 李海彬, 章建华, 沈本贤, 等. N,N-二甲基甲酰胺对催化汽油的萃取脱硫[J]. 石化技术与应用, 2008, 26(4): 312-315, 325. |
Li H B, Zhang J H, Shen B X, et al. Desulphurization of FCC gasoline by N,N-dimethylformamide extraction[J]. Petrochemical Technology & Application, 2008, 26(4): 312-315, 325. | |
97 | 陈娜, 张文林, 米冠杰, 等. FCC汽油萃取脱硫过程萃取剂筛选[J]. 化工进展, 2006, 25(11): 1345-1348. |
Chen N, Zhang W L, Mi G J, et al. Evaluation of extraction performance of the solvents for FCC gasoline deep desulfurization[J]. Chemical Industry and Engineering Progress, 2006, 25(11): 1345-1348. | |
98 | 崔盈贤, 唐晓东. 复合萃取剂选择性萃取脱硫研究[J]. 石油与天然气化工, 2005, 34(5): 387-388, 338. |
Cui Y X, Tang X D. Study on selective extraction desulfurization with composite extractant[J]. Chemical Engineering of Oil and Gas, 2005, 34(5): 387-388, 338. | |
99 | 齐元元. 吸附法与萃取法脱除汽油中有机硫的研究[D]. 天津: 天津大学, 2008. |
Qi Y Y. Study on the desulfurization of gasoline by the method of adsorption and extraction[D]. Tianjin: Tianjin University, 2008. | |
100 | 田龙胜, 唐文成. FCC汽油溶剂抽提脱硫的研究[J]. 石油炼制与化工, 2001, 32(9): 7-9. |
Tian L S, Tang W C. Study on desulfurization of FCC gasoline by solvent extraction[J]. Petroleum Processing and Petrochemicals, 2001, 32(9): 7-9. | |
101 | Lee F, Gentry J C, Wytcherley R W, et al. Process of removing sulfur compounds from gasoline: US6551502B1[P]. 2003-04-22. |
102 | 张宇豪, 王永涛, 陈丰, 等. 清洁油品生产中溶剂萃取分离技术的研究进展[J]. 中国科学: 化学, 2018, 48(4): 319-328. |
Zhang Y H, Wang Y T, Chen F, et al. Development of solvent extraction separation process for clean oil production[J]. Scientia Sinica Chimica, 2018, 48(4): 319-328. | |
103 | Peng L J, Wang S X, Wang X X, et al. Liquid-liquid extraction and mechanism exploration for separation of mixture 2,2,3,3-tetrafluoro-1-propanol and water using pyridine-based ionic liquids[J]. Journal of Molecular Liquids, 2022, 360: 119468. |
104 | Li P P, Li Z, Liu S Y, et al. Imidazole/pyridine-based ionic liquids modified metal-organic frameworks for efficient adsorption of Congo red in water[J]. Journal of Molecular Structure, 2024, 1303: 137599. |
105 | Alenzi A F, Alkhaldi K H A E, Al-Jimaz A S, et al. Desulfurization of ternary mixtures of n-paraffins (C12 or C16) + thiophene + two methylimidazolium dicyanamide (DCA)-based ionic liquids[J]. Journal of Ionic Liquids, 2024, 4(1): 100090. |
106 | Sun C, Zhang Y L, Dai Y S, et al. Separation of ethyl acetate and ethanol by imidazole ionic liquids based on mechanism analysis and liquid-liquid equilibrium experiment[J]. Journal of Molecular Liquids, 2023, 371: 121108. |
107 | 王坤, 刘大凡, 何爱珍, 等. 离子液体萃取脱硫的研究[J]. 石油化工, 2010, 39(6): 675-680. |
Wang K, Liu D F, He A Z, et al. Extractive desulfurization of simulative oil with ionic liquids[J]. Petrochemical Technology, 2010, 39(6): 675-680. | |
108 | 张彦琳. 离子液体在柴油脱硫中的应用研究[D]. 北京: 北京化工大学, 2022. |
Zhang Y L. Application of ionic liquid in diesel desulfurization[D]. Beijing: Beijing University of Chemical Technology, 2022. | |
109 | 赵明泽, 赵荣祥, 李秀萍, 等. 氨基酸离子液体氧化-萃取脱硫工艺研究[J]. 石化技术与应用, 2013, 31(5): 384-387. |
Zhao M Z, Zhao R X, Li X P, et al. Study on oxidation-extraction desulfurization process of model oil by amino acid ionic liquid[J]. Petrochemical Technology & Application, 2013, 31(5): 384-387. | |
110 | 张存, 王峰, 潘小玉, 等. 酸性离子液体萃取-氧化模拟油品脱硫研究[J]. 燃料化学学报, 2011, 39(9): 689-693. |
Zhang C, Wang F, Pan X Y, et al. Study on extraction-oxidation desulfurization of model oil by acidic ionic liquid[J]. Journal of Fuel Chemistry and Technology, 2011, 39(9): 689-693. | |
111 | 杨丽娜, 李剑, 王强. 糠醛加助剂精制焦化柴油[J]. 安徽化工, 2004, 30(2): 8-9. |
Yang L N, Li J, Wang Q. To fine the coked diesel by furfural and assistants[J]. Anhui Chemical Industry, 2004, 30(2): 8-9. | |
112 | 刘丹. 面向燃油脱硫脱氮的非卤素型碳正离子基络合试剂的性能研究[D]. 武汉: 武汉工程大学, 2023. |
Liu D. Performance of Non-halogenated carbocation-based complexing reagents for fuel desulfurization and denitrification[D]. Wuhan: Wuhan Institute of Technology, 2023. | |
113 | 胡震, 张利, 于海莲. 三氯化铁络合脱除柴油中碱性氮化物的研究[J]. 无机盐工业, 2010, 42(1): 53-54. |
Hu Z, Zhang L, Yu H L. Study on removing of basic nitrogen compounds from diesel oil with complexant ferric trichloride[J]. Inorganic Chemicals Industry, 2010, 42(1): 53-54. | |
114 | Anantharaj R, Banerjee T. COSMO-RS-based screening of ionic liquids as green solvents in denitrification studies[J]. Industrial & Engineering Chemistry Research, 2010, 49(18): 8705-8725. |
115 | 王云芳, 刘伟, 袁倩, 等. 焦化柴油氧化萃取脱氮技术研究[J]. 应用化工, 2011, 40(8): 1430-1433, 1436. |
Wang Y F, Liu W, Yuan Q, et al. Technology of oxidative denitrification combined with extraction for coking diesel[J]. Applied Chemical Industry, 2011, 40(8): 1430-1433, 1436. | |
116 | 孔令照, 李萍, 李建东, 等. 柴油脱除环烷酸精制工艺研究进展[J]. 石油化工高等学校学报, 2004, 17(3): 37-40, 5. |
Kong L Z, Li P, Li J D, et al. Progress on removing naphthenic acids for diesel oil refining[J]. Journal of Petrochemical Universities, 2004, 17(3): 37-40, 5. | |
117 | Kang S S, Kim T H, Cho D W, et al. Continuous extraction of naphthenic acid from low-grade oil using 1,6-hexanediol in an ammonia solution[J]. Fuel, 2023, 332: 126008. |
118 | 唐晓东, 徐荣. 乙醇-水萃取精制直馏柴油的研究[J]. 化学工业与工程, 1997, 14(3): 17-20. |
Tang X D, Xu R. Laboratory research on refinement of straight diesel distillate by extraction with ethanol-water[J]. Chemical Industry and Engineering, 1997, 14(3): 17-20. | |
119 | Najmuddin R A, Abdul Mutalib M I, Shah S N, et al. Liquid-liquid extraction of naphthenic acid using thiocyanate based ionic liquids[J]. Procedia Engineering, 2016, 148: 662-670. |
120 | Nasir Shah S, Kallidanthiyil Chellappan L, Gonfa G, et al. Extraction of naphthenic acid from highly acidic oil using phenolate based ionic liquids[J]. Chemical Engineering Journal, 2016, 284: 487-493. |
121 | 刘利, 谢飚. 煤焦油提酚工艺技术分析与应用[J]. 煤化工, 2014, 42(2): 57-60. |
Liu L, Xie B. Discussion on the technology of extracting phenolic compounds from coal tar[J]. Coal Chemical Industry, 2014, 42(2): 57-60. | |
122 | Wang Y G, Jiang G C, Zhang S J, et al. The application of a modified dissolving model to the separation of major components in low-temperature coal tar[J]. Fuel Processing Technology, 2016, 149: 313-319. |
123 | 刘宸. 二甲基亚砜萃取分离中低温煤焦油机理研究[D]. 北京: 中国矿业大学 (北京), 2022. |
Liu C. Research on the interaction mechanism during medium-and-low temperature coal tar DMSO extraction process[D]. Beijing: China University of Mining & Technology, 2022. | |
124 | 胡发亭, 毛学锋, 赵渊. 煤衍生油溶剂萃取提酚技术试验研究[J]. 现代化工, 2018, 38(8): 81-84. |
Hu F T, Mao X F, Zhao Y. Experimental study on extracting phenols from coal derivative oils[J]. Modern Chemical Industry, 2018, 38(8): 81-84. | |
125 | 赵渊, 毛学锋, 张晓静, 等. 丙三醇水溶液提取煤焦油中酚类化合物试验研究[J]. 洁净煤技术, 2014, 20(4): 55-57, 89. |
Zhao Y, Mao X F, Zhang X J, et al. Preliminary exploration of extracting phenolic compounds in medium and low temperature coal tar by glycerin solution[J]. Clean Coal Technology, 2014, 20(4): 55-57, 89. | |
126 | 刘继东, 刘爽, 吕建华, 等. 从含酚馏分油中萃取酚的溶剂选择及萃取条件研究[J]. 石油与天然气化工, 2017, 46(4): 30-34. |
Liu J D, Liu S, Lyu J H, et al. Study on solvent selection and extraction conditions of extracting phenolic compounds from distillate oil containing phenol[J]. Chemical Engineering of Oil & Gas, 2017, 46(4): 30-34. | |
127 | 乔林. 低温煤焦油中酚类化合物的无碱化提取研究[D]. 青岛: 青岛科技大学, 2019. |
Qiao L. Study on the alkali-free extraction of phenolic compounds from low temperature coal tar[D]. Qingdao: Qingdao University of Science & Technology, 2019. | |
128 | Ma Z H, Li S, Guo C, et al. Application of dual-solvent extraction for separating a low-temperature coal tar: a detailed experimental and quantum chemical study[J]. Fuel, 2023, 334: 126654. |
129 | Xu D M, Wang S X, Zhang T, et al. Extraction and interaction insights for enhanced separation of phenolic compounds from model coal tar using a hydroxyl-functionalized ionic liquid[J]. Chemical Engineering Research and Design, 2022, 178: 567-574. |
130 | Li Y L, Xiong Q, Liu H J, et al. New coupling technology of phenols extraction in coal tar and carbon dioxide capture: modeling, optimization and techno-economic analysis[J]. Fuel, 2024, 357: 130056. |
[1] | 文一如, 付佳, 刘大欢. 基于机器学习的MOFs材料研究进展:能源气体吸附分离[J]. 化工学报, 2024, 75(4): 1370-1381. |
[2] | 董霄, 白志山, 杨晓勇, 殷伟, 刘宁普, 于启凡. CHPPO工艺氧化液耦合除杂技术的研究与工业应用[J]. 化工学报, 2024, 75(4): 1630-1641. |
[3] | 刘莹, 郑芳, 杨启炜, 张治国, 任其龙, 鲍宗必. 二甲苯异构体吸附分离研究进展[J]. 化工学报, 2024, 75(4): 1081-1095. |
[4] | 吕田田, 原敏, 王江, 高美珍, 杨佳辉, 徐红, 董晋湘, 石琪. ZTIF基疏水微介孔碳的制备及5-羟甲基糠醛吸附分离性能[J]. 化工学报, 2024, 75(4): 1642-1654. |
[5] | 莫滨宇, 张雅馨, 刘国振, 刘公平, 金万勤. 面向一/二价离子分离的金属有机骨架膜研究进展[J]. 化工学报, 2024, 75(4): 1183-1197. |
[6] | 张凯博, 沈佳新, 李玉霞, 谈朋, 刘晓勤, 孙林兵. Y沸石中Cu(Ⅰ)的可控构筑及其乙烯/乙烷吸附分离性能研究[J]. 化工学报, 2024, 75(4): 1607-1615. |
[7] | 李添翼, 武玉泰, 王永胜, 顾佳锐, 宋沂恒, 杨丰铖, 郝广平. 轻同位素分离纯化与催化标记研究进展[J]. 化工学报, 2024, 75(4): 1284-1301. |
[8] | 张子佳, 仇昕月, 孙翔, 罗志斌, 罗海中, 贺高红, 阮雪华. 聚酰亚胺膜材料分子结构设计强化CO2渗透性研究进展[J]. 化工学报, 2024, 75(4): 1137-1152. |
[9] | 邢雷, 关帅, 蒋明虎, 赵立新, 蔡萌, 刘海龙, 陈德海. 高气液比井下气液旋流分离器结构设计与性能分析[J]. 化工学报, 2024, 75(3): 900-913. |
[10] | 李宁, 朱朋飞, 张立峰, 卢栋臣. 基于非凸与不可分离正则化算法的电容层析成像图像重建[J]. 化工学报, 2024, 75(3): 836-846. |
[11] | 陶明清, 慕明昊, 程滕, 王博. 喷雾耦合降温强化旋风分离器脱除细颗粒物的研究[J]. 化工学报, 2024, 75(2): 584-592. |
[12] | 郑雨婷, 方冠东, 张梦波, 张浩淼, 王靖岱, 阳永荣. 微化工精馏分离技术研究进展[J]. 化工学报, 2024, 75(1): 47-59. |
[13] | 朱娇, 栾丽萍, 从深震, 刘新磊. 氢气分离有机膜[J]. 化工学报, 2024, 75(1): 138-158. |
[14] | 王尤佳, 赵亮, 高金森, 徐春明. 柴油烃类族组成分离技术研究进展[J]. 化工学报, 2024, 75(1): 20-32. |
[15] | 孟祥军, 花莹曦, 张长金, 张弛, 杨林睿, 杨若昔, 刘鉴漪, 许春建. 6N电子级氘气的制备与纯化技术研究[J]. 化工学报, 2024, 75(1): 377-390. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||