化工学报 ›› 2024, Vol. 75 ›› Issue (10): 3379-3400.DOI: 10.11949/0438-1157.20240245
收稿日期:
2024-03-01
修回日期:
2024-06-18
出版日期:
2024-10-25
发布日期:
2024-11-04
通讯作者:
周云龙
作者简介:
皮若冰(1996—),女,博士研究生,piruobing0316@163.com
基金资助:
Received:
2024-03-01
Revised:
2024-06-18
Online:
2024-10-25
Published:
2024-11-04
Contact:
Yunlong ZHOU
摘要:
全球变暖与能源不足是世界性难题,利用太阳能通过光催化还原二氧化碳为高附加值的含碳化学品有望成为解决以上问题的重要途径。因此,制备高效且低成本的光催化材料至关重要。已知的双组分催化剂中,直接Z型异质结光催化剂因其较低的光生电子空穴复合率、强氧化及还原能力和较高的光催化反应效率得到广泛关注。综述了光催化还原二氧化碳的原理,直接Z型异质结的确认方法(包括光催化还原实验、自由基鉴别实验、原位辐照X射线光电子能谱、金属负载及理论计算等方法),明确了直接Z型异质结的光催化机理。此外,总结了直接Z型异质结结构中承担氧化或还原作用的常见催化剂的现阶段研究现状。最后,对于该领域发展所面临的挑战和机遇进行了总结和展望。
中图分类号:
皮若冰, 周云龙. 直接Z型异质结体系光催化还原二氧化碳研究进展[J]. 化工学报, 2024, 75(10): 3379-3400.
Ruobing PI, Yunlong ZHOU. Research progress on photocatalytic reduction of carbon dioxide in direct Z-scheme heterojunctions system[J]. CIESC Journal, 2024, 75(10): 3379-3400.
反应方程 | 氧化还原电位E0(vs NHE, pH=7.0)/V |
---|---|
2H2O + 4h+![]() | +0.81 |
2H+ + 2e-![]() | -0.42 |
CO2 + 2H+ +2e-![]() | -0.53 |
CO2 + 2H+ + 2e-![]() | -0.61 |
CO2 + 4H+ + 4e-![]() | -0.48 |
CO2 + 6H+ + 6e-![]() | -0.39 |
CO2 + 8H+ + 8e-![]() | -0.24 |
2CO2 + 8H+ + 8e-![]() | -0.31 |
2CO2 + 10H+ + 10e-![]() | -0.36 |
2CO2 + 12H+ + 12e-![]() | -0.33 |
2CO2 + 14H+ + 14e-![]() | -0.27 |
表1 光催化还原二氧化碳反应式及氧化还原电位(H2O存在条件下)
Table 1 Photocatalytic reduction of CO2 reaction formula and redox potential (with water)
反应方程 | 氧化还原电位E0(vs NHE, pH=7.0)/V |
---|---|
2H2O + 4h+![]() | +0.81 |
2H+ + 2e-![]() | -0.42 |
CO2 + 2H+ +2e-![]() | -0.53 |
CO2 + 2H+ + 2e-![]() | -0.61 |
CO2 + 4H+ + 4e-![]() | -0.48 |
CO2 + 6H+ + 6e-![]() | -0.39 |
CO2 + 8H+ + 8e-![]() | -0.24 |
2CO2 + 8H+ + 8e-![]() | -0.31 |
2CO2 + 10H+ + 10e-![]() | -0.36 |
2CO2 + 12H+ + 12e-![]() | -0.33 |
2CO2 + 14H+ + 14e-![]() | -0.27 |
图3 光照后g-C3N4、NiTiO3和NT/GCN40的ESR分析图及Z型异质结反应机理示意图[54](1 G=10-4 T)
Fig.3 ESR analysis of g-C3N4、NiTiO3 and NT/GCN40 after irradiation and schematic illustration of reaction mechanism for Z-scheme heterojunction[54]
图6 通过在CPB/BWO异质结上光沉积Pt纳米粒子(NPs)跟踪电子转移路线[61]
Fig.6 Tracking the electron transfer route by photodeposition of Pt nanoparticles (NPs) on the CPB/BWO heterojunction[61]
图8 (a), (b)不同材料在紫外可见光及可见光下的电流密度[80];(c) TiO2/ZnIn2S4形成的Z型体系示意图[80];(d) Zn3In2S6/TiO2的光催化还原机理图[81]
Fig.8 (a), (b) Current density of different materials in UV-visible light and visible light[80]; (c) Schematic diagrams for energy bands of TiO2 nanobelt and ZnIn2S4 nanosheet and the transfer of photogenerated electrons from TiO2 to ZnIn2S4 forming Z-scheme system under UV-Vis light irradiation [80];(d) The CO2 photocatalytic reduction right mechanism of ZIS/TiO2[81]
图10 (a) 不同还原剂对WO3/g-C3N4光催化CO2还原的影响; (b) Z型WO3/g-C3N4异质结示意图[88]
Fig.10 (a) Effect of reducing agent on the photoactivity of WO3/g-C3N4 for photocatalytic CO2 reduction; (b) Schematic illustration of direct Z-scheme WO3/g-C3N4 heterojunction[88]
图11 WO3与LTON的费米能级,复合材料的内置电子场及Z型电荷转移机理[90]
Fig.11 Fermi levels of WO3 and LTON, internal electron fields of composites and Z-scheme charge transfer mechanism[90]
图14 复合材料的高分辨率TEM图像、还原产物的GC-MS谱图及CO2产生碳氢化合物燃料的机理[101]
Fig.14 HRTEM images of composites, GC-MS spectra of reduction products and mechanistic representation of the production of hydrocarbon fuels from CO2[101]
图15 不同构型的异质结构的光催化剂的光催化性能及光催化机理[102]
Fig.15 Photocatalytic performance and photocatalytic mechanism of heterogeneous photocatalysts with different configurations[102]
1 | Kweku D W, Bismark O, Maxwell A, et al. Greenhouse effect: greenhouse gases and their impact on global warming[J]. Journal of Scientific Research and Reports, 2018, 17(6): 1-9. |
2 | Warren R, Hope C, Gernaat D E H J, et al. Global and regional aggregate damages associated with global warming of 1.5 to 4℃ above pre-industrial levels[J]. Climatic Change, 2021, 168(3): 24. |
3 | Tapia J F D, Lee J Y, Ooi R E H, et al. A review of optimization and decision-making models for the planning of CO2 capture, utilization and storage (CCUS) systems[J]. Sustainable Production and Consumption, 2018, 13: 1-15. |
4 | 张贤, 李阳, 马乔, 等. 我国碳捕集利用与封存技术发展研究[J]. 中国工程科学, 2021, 23(6): 70-80. |
Zhang X, Li Y, Ma Q, et al. Development of carbon capture, utilization and storage technology in China[J]. Strategic Study of CAE, 2021, 23(6): 70-80. | |
5 | Davoodi S, Al-Shargabi M, Wood D A, et al. Review of technological progress in carbon dioxide capture, storage, and utilization[J]. Gas Science and Engineering, 2023, 117: 205070. |
6 | 陈兵, 肖红亮, 李景明, 等. 二氧化碳捕集、利用与封存研究进展[J]. 应用化工, 2018, 47(3): 589-592. |
Chen B, Xiao H L, Li J M, et al. Advances in research on carbon capture, utilization and storage[J]. Applied Chemical Industry, 2018, 47(3): 589-592. | |
7 | Jiang K, Ashworth P, Zhang S Y, et al. China's carbon capture, utilization and storage (CCUS) policy: a critical review[J]. Renewable and Sustainable Energy Reviews, 2020, 119: 109601. |
8 | Zhang J P, Li Z W, Zhang Z H, et al. Can thermocatalytic transformations of captured CO2 reduce CO2 emissions?[J]. Applied Energy, 2021, 281: 116076. |
9 | Len T, Luque R. Addressing the CO2 challenge through thermocatalytic hydrogenation to carbon monoxide, methanol and methane[J]. Green Chemistry, 2023, 25(2): 490-521. |
10 | Prabhu P, Jose V, Lee J M. Heterostructured catalysts for electrocatalytic and photocatalytic carbon dioxide reduction[J]. Advanced Functional Materials, 2020, 30(24): 1910768. |
11 | Jia G R, Wang Y, Sun M Z, et al. Size effects of highly dispersed bismuth nanoparticles on electrocatalytic reduction of carbon dioxide to formic acid[J]. Journal of the American Chemical Society, 2023, 145(25): 14133-14142. |
12 | Sharma K, Park Y K, Nadda A K, et al. Emerging chemo-biocatalytic routes for valorization of major greenhouse gases (GHG) into industrial products: a comprehensive review[J]. Journal of Industrial and Engineering Chemistry, 2022, 109: 1-20. |
13 | Zhou Y S, Wang Z T, Huang L, et al. Engineering 2D photocatalysts toward carbon dioxide reduction[J]. Advanced Energy Materials, 2021, 11(8): 2003159. |
14 | Chen J, Abazari R, Adegoke K A, et al. Metal-organic frameworks and derived materials as photocatalysts for water splitting and carbon dioxide reduction[J]. Coordination Chemistry Reviews, 2022, 469: 214664. |
15 | Luo C, Long Q, Cheng B, et al. A DFT study on S-scheme heterojunction consisting of Pt single atom loaded G-C3N4 and BiOCl for photocatalytic CO2 reduction[J]. Acta Physico Chimica Sinica, 2023, 39(6): 2212026. |
16 | Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38. |
17 | Halmann M. Photoelectrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquid junction solar cells[J]. Nature, 1978, 275: 115-116. |
18 | El-Bery H M, Abdelhamid H N. Photocatalytic hydrogen generation via water splitting using ZIF-67 derived Co3O4@C/TiO2 [J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105702. |
19 | Yang Y, Zhou C Y, Wang W J, et al. Recent advances in application of transition metal phosphides for photocatalytic hydrogen production[J]. Chemical Engineering Journal, 2021, 405: 126547. |
20 | Chen D J, Cheng Y L, Zhou N, et al. Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: a review[J]. Journal of Cleaner Production, 2020, 268: 121725. |
21 | Solangi N H, Karri R R, Mazari S A, et al. MXene as emerging material for photocatalytic degradation of environmental pollutants[J]. Coordination Chemistry Reviews, 2023, 477: 214965. |
22 | Wang T, Qu S S, Wang J H, et al. W/Mo-heteropoly blue-modified defective W18O49 as Z-scheme heterostructure photocatalysts for efficient N2 fixation[J]. Journal of Alloys and Compounds, 2023, 938: 168631. |
23 | Liu D, Chen S T, Li R J, et al. Review of Z-scheme heterojunctions for photocatalytic energy conversion[J]. Acta Physico Chimica Sinica, 2021, 37(6): 2010017. |
24 | Tang Z L, Wang C J, He W J, et al. The Z-scheme g-C3N4/3DOM-WO3 photocatalysts with enhanced activity for CO2 photoreduction into CO[J]. Chinese Chemical Letters, 2022, 33(2): 939-942. |
25 | He W J, Xiong J, Tang Z L, et al. Localized surface plasmon resonance effect of bismuth nanoparticles in Bi/TiO2 catalysts for boosting visible light-driven CO2 reduction to CH4 [J]. Applied Catalysis B: Environment and Energy, 2024, 344: 123651. |
26 | Li X B, Kang B B, Dong F, et al. Enhanced photocatalytic degradation and H2/H2O2 production performance of S-pCN/WO2.72 S-scheme heterojunction with appropriate surface oxygen vacancies[J]. Nano Energy, 2021, 81: 105671. |
27 | Tu W G, Guo W L, Hu J Q, et al. State-of-the-art advancements of crystal facet-exposed photocatalysts beyond TiO2: design and dependent performance for solar energy conversion and environment applications[J]. Materials Today, 2020, 33: 75-86. |
28 | Zhu H R, Zhang C, Xie K F, et al. Photocatalytic degradation of organic pollutants over MoS2/Ag-ZnFe2O4 Z-scheme heterojunction: revealing the synergistic effects of exposed crystal facets, defect engineering, and Z-scheme mechanism[J]. Chemical Engineering Journal, 2023, 453: 139775. |
29 | Bie C B, Cheng B, Fan J J, et al. Enhanced solar-to-chemical energy conversion of graphitic carbon nitride by two-dimensional cocatalysts[J]. EnergyChem, 2021, 3(2): 100051. |
30 | Tang Z L, He W J, Wang Y L, et al. Ternary heterojunction in rGO-coated Ag/Cu2O catalysts for boosting selective photocatalytic CO2 reduction into CH4 [J]. Applied Catalysis B: Environmental, 2022, 311: 121371. |
31 | Low J, Yu J G, Jaroniec M, et al. Heterojunction photocatalysts[J]. Advanced Materials, 2017, 29(20): 1601694. |
32 | Madhusudan P, Shi R, Xiang S L, et al. Construction of highly efficient Z-scheme Zn x Cd1- x S/Au@g-C3N4 ternary heterojunction composite for visible-light-driven photocatalytic reduction of CO2 to solar fuel[J]. Applied Catalysis B: Environmental, 2021, 282: 119600. |
33 | He W J, Wei Y C, Xiong J, et al. Variable valence Mo5+/Mo6+ ionic bridge in hollow spherical g-C3N4/Bi2MoO6 catalysts for promoting selective visible light-driven CO2 photoreduction into CO[J]. Journal of Energy Chemistry, 2023, 80: 361-372. |
34 | Han X X, Lu B J, Huang X, et al. Novel p- and n-type S-scheme heterojunction photocatalyst for boosted CO2 photoreduction activity[J]. Applied Catalysis B: Environmental, 2022, 316: 121587. |
35 | Wang Z P, Lin Z P, Shen S J, et al. Advances in designing heterojunction photocatalytic materials[J]. Chinese Journal of Catalysis, 2021, 42(5): 710-730. |
36 | Cheng Y Y, Liu Y X, Liu Y L, et al. A core-satellite structured type Ⅱ heterojunction photocatalyst with enhanced CO2 reduction under visible light[J]. Nano Research, 2022, 15(10): 8880-8889. |
37 | Bard A J. Photoelectrochemistry and heterogeneous photo-catalysis at semiconductors[J]. Journal of Photochemistry, 1979, 10(1): 59-75. |
38 | Tada H, Mitsui T, Kiyonaga T, et al. All-solid-state Z-scheme in CdS-Au-TiO2 three-component nanojunction system[J]. Nature Materials, 2006, 5(10): 782-786. |
39 | Yu J G, Wang S H, Low J, et al. Enhanced photocatalytic performance of direct Z-scheme g-C3N4-TiO2 photocatalysts for the decomposition of formaldehyde in air[J]. Physical Chemistry Chemical Physics: PCCP, 2013, 15(39): 16883-16890. |
40 | Wang Y O, Suzuki H, Xie J J, et al. Mimicking natural photosynthesis: solar to renewable H2 fuel synthesis by Z-scheme water splitting systems[J]. Chemical Reviews, 2018, 118(10): 5201-5241. |
41 | Li K, Peng B S, Peng T Y. Recent advances in heterogeneous photocatalytic CO2 conversion to solar fuels[J]. ACS Catalysis, 2016, 6(11): 7485-7527. |
42 | Kumar A, Raizada P, Thakur V K, et al. An overview on polymeric carbon nitride assisted photocatalytic CO2 reduction: strategically manoeuvring solar to fuel conversion efficiency[J]. Chemical Engineering Science, 2021, 230: 116219. |
43 | Dong W W, Jia J, Wang Y, et al. Visible-light-driven solvent-free photocatalytic CO2 reduction to CO by Co-MOF/Cu2O heterojunction with superior selectivity[J]. Chemical Engineering Journal, 2022, 438: 135622. |
44 | Raziq F, Qu Y, Humayun M, et al. Synthesis of SnO2/B-P codoped g-C3N4 nanocomposites as efficient cocatalyst-free visible-light photocatalysts for CO2 conversion and pollutant degradation[J]. Applied Catalysis B: Environmental, 2017, 201: 486-494. |
45 | Wang X Y, Wang Y S, Gao M C, et al. BiVO4/Bi4Ti3O12 heterojunction enabling efficient photocatalytic reduction of CO2 with H2O to CH3OH and CO[J]. Applied Catalysis B: Environmental, 2020, 270: 118876. |
46 | Low J, Jiang C J, Cheng B, et al. A review of direct Z-scheme photocatalysts[J]. Small Methods, 2017, 1(5): 1700080. |
47 | Bhosale R, Jain S, Vinod C P, et al. Direct Z-scheme g-C3N4/FeWO4 nanocomposite for enhanced and selective photocatalytic CO2 reduction under visible light[J]. ACS Applied Materials & Interfaces, 2019, 11(6): 6174-6183. |
48 | Lin Z D, Guo R T, Yuan Y, et al. Fabrication of flower spherical-like Z-scheme FeWO4/NiAl-LDH photocatalysts with excellent activity for CO2 photoreduction under visible light[J]. Applied Surface Science, 2021, 567: 150805. |
49 | Kohno M, Mizuta Y, Kusai M, et al. Measurements of superoxide anion radical and superoxide anion scavenging activity by electron spin resonance spectroscopy coupled with DMPO spin trapping[J]. Bulletin of the Chemical Society of Japan, 1994, 67(4): 1085-1090. |
50 | Li L X, Abe Y, Kanagawa K, et al. Distinguishing the 5,5-dimethyl-1-pyrroline N-oxide (DMPO)-OH radical quenching effect from the hydroxyl radical scavenging effect in the ESR spin-trapping method[J]. Analytica Chimica Acta, 2004, 512(1): 121-124. |
51 | Leandri V, Gardner J M, Jonsson M. Coumarin as a quantitative probe for hydroxyl radical formation in heterogeneous photocatalysis[J]. The Journal of Physical Chemistry C, 2019, 123(11): 6667-6674. |
52 | Žerjav G, Albreht A, Vovk I, et al. Revisiting terephthalic acid and coumarin as probes for photoluminescent determination of hydroxyl radical formation rate in heterogeneous photocatalysis[J]. Applied Catalysis A: General, 2020, 598: 117566. |
53 | Jiang Z F, Wan W M, Li H M, et al. A hierarchical Z-scheme α-Fe2O3/g-C3N4 hybrid for enhanced photocatalytic CO2 reduction[J]. Advanced Materials, 2018, 30(10): 1706108. |
54 | Guo H W, Wan S P, Wang Y N, et al. Enhanced photocatalytic CO2 reduction over direct Z-scheme NiTiO3/g-C3N4 nanocomposite promoted by efficient interfacial charge transfer[J]. Chemical Engineering Journal, 2021, 412: 128646. |
55 | Chen Q, Li J, Cheng L, et al. Construction of CdLa2S4/MIL-88A(Fe) heterojunctions for enhanced photocatalytic H2-evolution activity via a direct Z-scheme electron transfer[J]. Chemical Engineering Journal, 2020, 379: 122389. |
56 | Jin J, Yu J G, Guo D P, et al. A hierarchical Z-scheme CdS-WO3 photocatalyst with enhanced CO2 reduction activity[J]. Small, 2015, 11(39): 5262-5271. |
57 | Mu Y F, Zhang C, Zhang M R, et al. Direct Z-scheme heterojunction of ligand-free FAPbBr3/ α - F e 2 O 3 for boosting photocatalysis of CO2 reduction coupled with water oxidation[J]. ACS Applied Materials & Interfaces, 2021, 13(19): 22314-22322. |
58 | Nie N, He F, Zhang L Y, et al. Direct Z-scheme PDA-modified ZnO hierarchical microspheres with enhanced photocatalytic CO2 reduction performance[J]. Applied Surface Science, 2018, 457: 1096-1102. |
59 | Wenderich K, Mul G. Methods, mechanism, and applications of photodeposition in photocatalysis: a review[J]. Chemical Reviews, 2016, 116(23): 14587-14619. |
60 | Zhu H M, Yang B F, Xu J, et al. Construction of Z-scheme type CdS–Au–TiO2 hollow nanorod arrays with enhanced photocatalytic activity[J]. Applied Catalysis B: Environmental, 2009, 90(3/4): 463-469. |
61 | Wang J C, Wang J, Li N Y, et al. Direct Z-scheme 0D/2D heterojunction of CsPbBr3 quantum dots/Bi2WO6 nanosheets for efficient photocatalytic CO2 reduction[J]. ACS Applied Materials & Interfaces, 2020, 12(28): 31477-31485. |
62 | Li Z F, Yang H M, Zhang D D, et al. Effects of Bi and S co-doping on the enhanced photoelectric performance of ZnO: theoretical and experimental investigations[J]. Journal of Alloys and Compounds, 2021, 872: 159648. |
63 | Xu D F, Cheng B, Wang W K, et al. Ag2CrO4/g-C3N4/graphene oxide ternary nanocomposite Z-scheme photocatalyst with enhanced CO2 reduction activity[J]. Applied Catalysis B: Environmental, 2018, 231: 368-380. |
64 | Yu W L, Chen J X, Shang T T, et al. Direct Z-scheme g-C3N4/WO3 photocatalyst with atomically defined junction for H2 production[J]. Applied Catalysis B: Environmental, 2017, 219: 693-704. |
65 | Hafez A M, Zedan A F, AlQaradawi S Y, et al. Computational study on oxynitride perovskites for CO2 photoreduction[J]. Energy Conversion and Management, 2016, 122: 207-214. |
66 | Wang Y L, Tian Y, Lang Z L, et al. A highly efficient Z-scheme B-doped g-C3N4/SnS2 photocatalyst for CO2 reduction reaction: a computational study[J]. Journal of Materials Chemistry A, 2018, 6(42): 21056-21063. |
67 | Li Z L, Xu J, An Y R, et al. Development of direct Z-schemes 2D/2D Bi2O2CO3/SrTiO3 photocatalyst with interfacial interaction for photocatalytic CO2 reduction[J]. Separation and Purification Technology, 2023, 311: 123323. |
68 | Xu F Y, Zhang J J, Zhu B C, et al. CuInS2 sensitized TiO2 hybrid nanofibers for improved photocatalytic CO2 reduction[J]. Applied Catalysis B: Environmental, 2018, 230: 194-202. |
69 | Di T M, Zhu B C, Cheng B, et al. A direct Z-scheme g-C3N4/SnS2 photocatalyst with superior visible-light CO2 reduction performance[J]. Journal of Catalysis, 2017, 352: 532-541. |
70 | Wang B, Zhao J Z, Chen H L, et al. Unique Z-scheme carbonized polymer dots/Bi4O5Br2 hybrids for efficiently boosting photocatalytic CO2 reduction[J]. Applied Catalysis B: Environmental, 2021, 293: 120182. |
71 | Zhang R, Li L J, Li Y Y, et al. Z-scheme SnS2/CsPbBr3 heterojunctions for photoreduction CO2 reaction and related photoinduced carrier behaviors[J]. Solar RRL, 2022, 6(10): 2200536. |
72 | Chen X J, Wang J, Chai Y Q, et al. Efficient photocatalytic overall water splitting induced by the giant internal electric field of a g-C3N4/rGO/PDIP Z-scheme heterojunction[J]. Advanced Materials, 2021, 33(7): 2007479. |
73 | Li Q, Xia Y, Yang C, et al. Building a direct Z-scheme heterojunction photocatalyst by ZnIn2S4 nanosheets and TiO2 hollowspheres for highly-efficient artificial photosynthesis[J]. Chemical Engineering Journal, 2018, 349: 287-296. |
74 | Bian J, Feng J N, Zhang Z Q, et al. Dimension-matched zinc phthalocyanine/BiVO4 ultrathin nanocomposites for CO2 reduction as efficient wide-visible-light-driven photocatalysts via a cascade charge transfer[J]. Angewandte Chemie, 2019, 131(32): 10989-10994. |
75 | Jiang Y, Chen H Y, Li J Y, et al. Z-scheme 2D/2D heterojunction of CsPbBr3/Bi2WO6 for improved photocatalytic CO2 reduction[J]. Advanced Functional Materials, 2020, 30(50): 2004293. |
76 | Wang P, Ba X H, Zhang X W, et al. Direct Z-scheme heterojunction of PCN-222/CsPbBr3 for boosting photocatalytic CO2 reduction to HCOOH[J]. Chemical Engineering Journal, 2023, 457: 141248. |
77 | Xu Q L, Zhang L Y, Yu J G, et al. Direct Z-scheme photocatalysts: principles, synthesis, and applications[J]. Materials Today, 2018, 21(10): 1042-1063. |
78 | Singh R, Dutta S. A review on H2 production through photocatalytic reactions using TiO2/TiO2-assisted catalysts[J]. Fuel, 2018, 220: 607-620. |
79 | Li Z Z, Wang S J, Wu J X, et al. Recent progress in defective TiO2 photocatalysts for energy and environmental applications[J]. Renewable and Sustainable Energy Reviews, 2022, 156: 111980. |
80 | Yang G, Chen D M, Ding H, et al. Well-designed 3D ZnIn2S4 nanosheets/TiO2 nanobelts as direct Z-scheme photocatalysts for CO2 photoreduction into renewable hydrocarbon fuel with high efficiency[J]. Applied Catalysis B: Environmental, 2017, 219: 611-618. |
81 | She H D, Wang Y, Zhou H, et al. Preparation of Zn3In2S6/TiO2 for enhanced CO2 photocatalytic reduction activity via Z-scheme electron transfer[J]. ChemCatChem, 2019, 11(2): 753-759. |
82 | Zhang Y, Zhang G L, Wang Y T, et al. In-situ synthesized porphyrin polymer/TiO2 composites as high-performance Z-scheme photocatalysts for CO2 conversion[J]. Journal of Colloid and Interface Science, 2021, 596: 342-351. |
83 | Sharma A, Hosseini-Bandegharaei A, Kumar N, et al. Insight into ZnO/carbon hybrid materials for photocatalytic reduction of CO2: an in-depth review[J]. Journal of CO2 Utilization, 2022, 65: 102205. |
84 | Zubair M, Razzaq A, Grimes C A, et al. Cu2ZnSnS4 (CZTS)-ZnO: a noble metal-free hybrid Z-scheme photocatalyst for enhanced solar-spectrum photocatalytic conversion of CO2 to CH4 [J]. Journal of CO2 Utilization, 2017, 20: 301-311. |
85 | Nie N, Zhang L Y, Fu J W, et al. Self-assembled hierarchical direct Z-scheme g-C3N4/ZnO microspheres with enhanced photocatalytic CO2 reduction performance[J]. Applied Surface Science, 2018, 441: 12-22. |
86 | Shandilya P, Sambyal S, Sharma R, et al. Properties, optimized morphologies, and advanced strategies for photocatalytic applications of WO3 based photocatalysts[J]. Journal of Hazardous Materials, 2022, 428: 128218. |
87 | Li X, Song X H, Ma C C, et al. Direct Z-scheme WO3/graphitic carbon nitride nanocomposites for the photoreduction of CO2 [J]. ACS Applied Nano Materials, 2020, 3(2): 1298-1306. |
88 | Tahir B, Tahir M, Nawawi M G M. Highly stable 3D/2D WO3/g-C3N4 Z-scheme heterojunction for stimulating photocatalytic CO2 reduction by H2O/H2 to CO and CH4 under visible light[J]. Journal of CO2 Utilization, 2020, 41: 101270. |
89 | Li B, Sun L Q, Bian J, et al. Controlled synthesis of novel Z-scheme iron phthalocyanine/porous WO3 nanocomposites as efficient photocatalysts for CO2 reduction[J]. Applied Catalysis B: Environmental, 2020, 270: 118849. |
90 | Lin N S, Lin Y, Qian X J, et al. Construction of a 2D/2D WO3/LaTiO2N direct Z-scheme photocatalyst for enhanced CO2 reduction performance under visible light[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(40): 13686-13694. |
91 | Jiang Y, Liao J F, Chen H Y, et al. All-solid-state Z-scheme α-Fe2O3/amine-RGO/CsPbBr3 hybrids for visible-light-driven photocatalytic CO2 reduction[J]. Chem, 2020, 6(3): 766-780. |
92 | Guo H W, Chen M Q, Zhong Q, et al. Synthesis of Z-scheme α - F e 2 O 3 / g-C3N4 composite with enhanced visible-light photocatalytic reduction of CO2 to CH3OH[J]. Journal of CO2 Utilization, 2019, 33: 233-241. |
93 | Jia Y F, Zhang W B, Do J Y, et al. Z-scheme SnFe2O4/α-Fe2O3 micro-octahedron with intimated interface for photocatalytic CO2 reduction[J]. Chemical Engineering Journal, 2020, 402: 126193. |
94 | Song J, Lu Y, Lin Y, et al. A direct Z-scheme α-Fe2O3/LaTiO2N visible-light photocatalyst for enhanced CO2 reduction activity[J]. Applied Catalysis B: Environmental, 2021, 292: 120185. |
95 | Han H R, Han T T, Luo Y, et al. Well-designed α-Fe2O3/ZnFe2O4 heterojunction for photocatalytic CO2 reduction to fuels[J]. Materials Letters, 2023, 352: 135181. |
96 | Ye L Q, Deng Y, Wang L, et al. Bismuth-based photocatalysts for solar photocatalytic carbon dioxide conversion[J]. ChemSusChem, 2019, 12(16): 3671-3701. |
97 | Wei Z H, Wang Y F, Li Y Y, et al. Enhanced photocatalytic CO2 reduction activity of Z-scheme CdS/BiVO4 nanocomposite with thinner BiVO4 nanosheets[J]. Journal of CO2 Utilization, 2018, 28: 15-25. |
98 | Duan Z Y, Zhao X J, Chen L M. BiVO4/Cu0.4V2O5 composites as a novel Z-scheme photocatalyst for visible-light-driven CO2 conversion[J]. Journal of Environmental Chemical Engineering, 2021, 9(1): 104628. |
99 | Li C F, Guo R T, Zhang Z R, et al. Converting CO2 into value‐added products by Cu2O‐based catalysts: from photocatalysis, electrocatalysis to photoelectrocatalysis[J]. Small, 2023, 19(19): 2207875. |
100 | Wu Y J, Gong Y Y, Liu J H, et al. Constructing NiFe-LDH wrapped Cu2O nanocube heterostructure photocatalysts for enhanced photocatalytic dye degradation and CO2 reduction via Z-scheme mechanism[J]. Journal of Alloys and Compounds, 2020, 831: 154723. |
101 | Hao J Y, Qi B J, Wei J J, et al. A Z-scheme Cu2O/WO3 heterojunction for production of renewable hydrocarbon fuel from carbon dioxide[J]. Fuel, 2021, 287: 119439. |
102 | Singh S, Punia R, Pant K K, et al. Effect of work-function and morphology of heterostructure components on CO2 reduction photo-catalytic activity of MoS2-Cu2O heterostructure[J]. Chemical Engineering Journal, 2022, 433: 132709. |
103 | He Y Q, Rao H, Song K P, et al. 3D hierarchical ZnIn2S4 nanosheets with rich Zn vacancies boosting photocatalytic CO2 reduction[J]. Advanced Functional Materials, 2019, 29(45): 1905153. |
104 | Zhao Z H, Shi C X, Shen Q, et al. Hierarchical Z-scheme Fe2O3@ZnIn2S4 core-shell heterostructures with enhanced adsorption capacity enabling significantly improved photocatalytic CO2 reduction[J]. CrystEngComm, 2020, 22(47): 8221-8227. |
105 | Han Q T, Li L, Gao W, et al. Elegant construction of ZnIn2S4/BiVO4 hierarchical heterostructures as direct Z-scheme photocatalysts for efficient CO2 photoreduction[J]. ACS Applied Materials & Interfaces, 2021, 13(13): 15092-15100. |
106 | Zhang G Q, Wang Z Q, He T, et al. Rationally design and in-situ fabrication of ultrasmall pomegranate-like CdIn2S4/ZnIn2S4 Z-scheme heterojunction with abundant vacancies for improving CO2 reduction and water splitting[J]. Chemical Engineering Journal, 2022, 442: 136309. |
107 | Lange T, Reichenberger S, Ristig S, et al. Zinc sulfide for photocatalysis: white angel or black sheep?[J]. Progress in Materials Science, 2022, 124: 100865. |
108 | Li P, He T. Common-cation based Z-scheme ZnS@ZnO core-shell nanostructure for efficient solar-fuel production[J]. Applied Catalysis B: Environmental, 2018, 238: 518-524. |
109 | Murillo-Sierra J C, Hernández-Ramírez A, Pino-Sandoval D A, et al. Promoting multielectron CO2 reduction using a direct Z-scheme WO3/ZnS photocatalyst[J]. Journal of CO2 Utilization, 2022, 63: 102122. |
110 | Ahmad I, Ahmed S B, Shabir M, et al. Review on CdS-derived photocatalysts for solar photocatalytic applications—advances and challenges[J]. Journal of Industrial and Engineering Chemistry, 2024, 130: 105-124. |
111 | Zhou R H, Wei Z H, Li Y Y, et al. Construction of visible light-responsive Z-scheme CdS/BiOI photocatalyst with enhanced photocatalytic CO2 reduction activity[J]. Journal of Materials Research, 2019, 34(23): 3907-3917. |
112 | Li Y Y, Wei Z H, Fan J B, et al. Photocatalytic CO2 reduction activity of Z-scheme CdS/CdWO4 catalysts constructed by surface charge directed selective deposition of CdS[J]. Applied Surface Science, 2019, 483: 442-452. |
113 | Wang G J, Tang Z W, Wang J, et al. Energy band engineering of Bi2O2.33-CdS direct Z-scheme heterojunction for enhanced photocatalytic reduction of CO2 [J]. Journal of Materials Science & Technology, 2022, 111: 17-27. |
114 | Jia J, Zhang Q Q, Li K K, et al. Recent advances on g-C3N4-based Z-scheme photocatalysts: structural design and photocatalytic applications[J]. International Journal of Hydrogen Energy, 2023, 48(1): 196-231. |
115 | Gong Y N, Guan X Y, Jiang H L. Covalent organic frameworks for photocatalysis: synthesis, structural features, fundamentals and performance[J]. Coordination Chemistry Reviews, 2023, 475: 214889. |
116 | Borrelli M, Querebillo C J, Pastoetter D L, et al. Thiophene-based conjugated acetylenic polymers with dual active sites for efficient co-catalyst-free photoelectrochemical water reduction in alkaline medium[J]. Angewandte Chemie International Edition, 2021, 60(34): 18876-18881. |
117 | Feng Z, Zeng L, Chen Y J, et al. In situ preparation of Z-scheme MoO3/g-C3N4 composite with high performance in photocatalytic CO2 reduction and RhB degradation[J]. Journal of Materials Research, 2017, 32(19): 3660-3668. |
118 | Truc N T T, Hanh N T, Nguyen M V, et al. Novel direct Z-scheme Cu2V2O7/g-C3N4 for visible light photocatalytic conversion of CO2 into valuable fuels[J]. Applied Surface Science, 2018, 457: 968-974. |
119 | Huo Y, Zhang J F, Dai K, et al. All-solid-state artificial Z-scheme porous g-C3N4/Sn2S3-DETA heterostructure photocatalyst with enhanced performance in photocatalytic CO2 reduction[J]. Applied Catalysis B: Environmental, 2019, 241: 528-538. |
120 | Zhang M, Lu M, Lang Z L, et al. Semiconductor/covalent-organic-framework Z-scheme heterojunctions for artificial photosynthesis[J]. Angewandte Chemie, 2020, 132(16): 6562-6568. |
121 | Li S S, Yu H H, Wang Y W, et al. Engineering covalently integrated COF@CeO2 Z-scheme heterostructure for visible light driven photocatalytic CO2 conversion[J]. Applied Surface Science, 2023, 615: 156335. |
[1] | 李舒月, 王欢, 周少强, 毛志宏, 张永民, 王军武, 吴秀花. 基于CPFD方法的U3O8氢还原流化床反应器数值模拟[J]. 化工学报, 2024, 75(9): 3133-3151. |
[2] | 王树振, 王玉婷, 马梦茜, 张巍, 向江南, 鲁海莹, 王琰, 范彬彬, 郑家军, 代卫炯, 李瑞丰. 两步晶化合成ZSM-22分子筛及其临氢异构反应性能[J]. 化工学报, 2024, 75(9): 3176-3187. |
[3] | 王冉, 王焕, 熊晓云, 关慧敏, 郑云锋, 陈彩琳, 秦玉才, 宋丽娟. FCC催化剂传质强化活性位利用效率的可视化分析[J]. 化工学报, 2024, 75(9): 3198-3209. |
[4] | 吴学红, 韦新, 侯加文, 吕财, 刘勇, 刘鹤, 常志娟. 热解法制备碳纳米管及其在散热涂层中的应用研究[J]. 化工学报, 2024, 75(9): 3360-3368. |
[5] | 裴蓓, 郝治斌, 徐天祥, 钟子琪, 李瑞, 贾冲, 段玉龙. 表面活性剂对含盐双流体细水雾灭火效能的影响[J]. 化工学报, 2024, 75(9): 3369-3378. |
[6] | 刘亚超, 谭晓杰, 李旭东, 王瑞, 王慧, 韩璇, 赵青山. DES合成高活性CoCO3纳米片及析氧反应性能研究[J]. 化工学报, 2024, 75(9): 3320-3328. |
[7] | 胡术刚, 田国庆, 刘文娟, 徐广飞, 刘华清, 张建, 王艳龙. 纳米零价铁的制备及氧化还原技术的应用进展[J]. 化工学报, 2024, 75(9): 3041-3055. |
[8] | 张梦婷, 王书林, 桑熙, 元兴昊, 徐刚. 人工Cu-TM1459金属酶催化不对称迈克尔加成反应[J]. 化工学报, 2024, 75(9): 3255-3265. |
[9] | 曾港, 陈林, 杨董, 袁海专, 黄彦平. 矩形通道内超临界CO2局部热流场可视化实验[J]. 化工学报, 2024, 75(8): 2831-2839. |
[10] | 杨明军, 宋维, 张磊, 凌铮, 陈兵兵, 宋永臣. CO2-海水水合物生成强化方法研究[J]. 化工学报, 2024, 75(8): 2939-2948. |
[11] | 郑晓园, 蔡炎嶙, 应芝, 王波, 豆斌林. 污水污泥磷形态亚临界水热转化研究[J]. 化工学报, 2024, 75(8): 2970-2982. |
[12] | 罗莉, 陈文尧, 张晶, 钱刚, 周兴贵, 段学志. 氧化铝结构与表面性质调控及其催化甲醇脱水制二甲醚性能研究[J]. 化工学报, 2024, 75(7): 2522-2532. |
[13] | 刘旭升, 李泽洋, 杨宇森, 卫敏. 电催化二氧化碳还原制备气态产物的研究进展[J]. 化工学报, 2024, 75(7): 2385-2408. |
[14] | 王寅, 初鹏飞, 刘虎, 吕静, 黄守莹, 王胜平, 马新宾. 不同pH铝溶胶对二甲醚羰基化成型丝光沸石催化剂性能的影响[J]. 化工学报, 2024, 75(7): 2533-2543. |
[15] | 杨露, 刘聪聪, 孟彤彤, 张博远, 杨腾飞, 邓文安, 王晓斌. 分散型催化剂在煤/重油共炼体系中的加氢抑焦作用[J]. 化工学报, 2024, 75(7): 2556-2564. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 592
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 625
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||