化工学报 ›› 2024, Vol. 75 ›› Issue (7): 2385-2408.DOI: 10.11949/0438-1157.20240094
收稿日期:
2024-01-22
修回日期:
2024-04-22
出版日期:
2024-07-25
发布日期:
2024-08-09
通讯作者:
杨宇森
作者简介:
刘旭升(2001—),男,硕士研究生,2023201056@buct.edu.com
基金资助:
Xusheng LIU1(), Zeyang LI1, Yusen YANG1,2(
), Min WEI1
Received:
2024-01-22
Revised:
2024-04-22
Online:
2024-07-25
Published:
2024-08-09
Contact:
Yusen YANG
摘要:
随着工业化进程的快速推进,CO2排放量预计将持续上升,CO2捕获、储存和再利用受到研究者们的广泛关注。在各类CO2转化技术中,电催化技术因其反应条件温和可控、能耗低、环境污染小等优点,是最有前途的策略之一。近些年来,CO2选择性地转化为气态产物如一氧化碳、合成气、甲烷、乙烯和乙烷已有许多报道。本文对电催化CO2还原生成气体产物的反应机理和催化剂设计策略进行了介绍;对电催化CO2还原进行了总结与展望,包括新型电催化剂、机理研究、外部因素的影响以及级联反应。
中图分类号:
刘旭升, 李泽洋, 杨宇森, 卫敏. 电催化二氧化碳还原制备气态产物的研究进展[J]. 化工学报, 2024, 75(7): 2385-2408.
Xusheng LIU, Zeyang LI, Yusen YANG, Min WEI. Research progress on electrocatalytic carbon dioxide reduction to gaseous products[J]. CIESC Journal, 2024, 75(7): 2385-2408.
反应 | 反应方程式 | 标准氢电极电势(vs SHE)/V |
---|---|---|
ECO2RR半反应 | CO2(g) + 2H++ 2e- | -0.106 |
CO2(g) + 2H++ 2e- | -0.250 | |
CO2(g) + 4H++ 4e- | -0.070 | |
CO2(g) + 6H++ 6e- | 0.016 | |
CO2(g) + 8H++ 8e- | 0.169 | |
2CO2(g) + 12H++ 12e- | 0.064 | |
2CO2(g) + 12H++ 12e- | 0.084 | |
2CO2(g) + 2H++ 2e- | -0.05 | |
HER半反应 | 2H2O(g) + 2e-→ H2 (g) + 2OH- (aq) | 0 |
表1 水溶液中CO2还原反应可能发生的代表性半反应和标准还原电位[20]
Table 1 Typical semi-reaction and standard reduction potential that may occur for CO2 reduction in aqueous solution[20]
反应 | 反应方程式 | 标准氢电极电势(vs SHE)/V |
---|---|---|
ECO2RR半反应 | CO2(g) + 2H++ 2e- | -0.106 |
CO2(g) + 2H++ 2e- | -0.250 | |
CO2(g) + 4H++ 4e- | -0.070 | |
CO2(g) + 6H++ 6e- | 0.016 | |
CO2(g) + 8H++ 8e- | 0.169 | |
2CO2(g) + 12H++ 12e- | 0.064 | |
2CO2(g) + 12H++ 12e- | 0.084 | |
2CO2(g) + 2H++ 2e- | -0.05 | |
HER半反应 | 2H2O(g) + 2e-→ H2 (g) + 2OH- (aq) | 0 |
图2 (a)ECO2RR形成CO示意图;(b) Cr2O9H4/Ag(111)和Ag(111)生成CO的自由能图[42]
Fig.2 (a) Schematic diagram of ECO2RR formation of CO; (b) Free energy diagram of Cr2O9H4/Ag(111) and Ag(111) to generate CO[42]
图3 (a) np-Au的多孔网络结构以及形成的pH梯度[50];(b) Au NW和Au NP的边缘位置质量分数作为Au原子数的函数以及边缘/角的理想化比率[51];(c) 中空多孔Ag球形催化剂的合成示意图及SEM图像[53];(d) Tri-Ag NPs合成示意图[54];(e) Pd八面体和Pd二十面体的HAADF-STEM图像[56];(f) CO2在Pd(111)、Pd(211)、Pd55和Pd38上还原为CO的自由能图[57]
Fig.3 (a) The porous network structure of np-Au and the pH gradient formed[50]; (b) The percentage of mass at the edge position of Au NW and Au NP as a function of the number of Au atoms and the idealization ratio of the edge/angle[51]; (c) Schematic diagram and SEM images of the synthesis of hollow porous Ag spherical catalyst[53]; (d) Schematic diagram of Tri-Ag NPs synthesis[54]; (e) HAADF-STEM images of Pd octahedron and Pd icosahedral[56]; (f)Free energy diagram of CO2 reduced to CO on Pd(111), Pd(211), Pd55 and Pd38[57]
图4 (a) 多孔网络结构的SEM图及性能[59];(b) Zn枝晶的原位XANES数据[60];(c) Cu-Sn纳米颗粒合成及结构表征[64];(d) Cu-In的SEM及EDS图像[65];(e) NCNT的物理特性[68];(f) 煤转化为N掺杂多孔碳催化剂的示意图及性能对比[69];(g) 缺陷石墨烯(DG)的合成及其对CO2的电催化还原的示意图[70]
Fig.4 (a) SEM image and performance of porous network structure[59]; (b) In-situ XANES data of Zn dendrite[60]; (c) Synthesis and structural characterization of Cu-Sn nanoparticles[64]; (d) SEM and EDS images of Cu-In[65]; (e) Physical properties of NCNT[68]; (f) Schematic diagram and performance comparison of coal to N doped porous carbon catalysts[69]; (g) Synthesis of defective graphene (DG) and its electrocatalytic reduction of CO2[70]
图5 (a) AuCu合金催化剂还原CO2示意及性能[72];(b) Au/TiNS不同电压下H2与CO比例的范围[74];(c) Ag/TiO2催化剂不同电位下H2/CO比例[77];(d) ZIF-8负载Ag纳米颗粒BET等温线和FTIR图像 [80];(e) Pd-SnO2形成示意图[81];(f) PdMo-CNSs催化性能[82]
Fig.5 (a) Schematic diagram and performance of AuCu alloy catalyst for CO2 reduction[72]; (b) Range of H2 to CO ratio at different voltages of Au/TiNS[74]; (c) H2/CO ratio of Ag/TiO2 catalyst at different potentials[77]; (d) ZIF-8 loaded Ag nanoparticle BET isotherm and FTIR image[80]; (e) Schematic diagram of Pd-SnO2 formation[81]; (f) Catalytic performance of PdMo-CNSs[82]
图6 (a) R-Cu3P/Cu、O-Cu3P/Cu和Cu3P/Cu的高分辨率XPS谱图[84];(b) 碳掺杂缺陷ZnO火焰合成装置示意[85];(c) PNC的SEM、HRTEM图像和EDS谱图[87];(d) pCNTA的催化性能[88]
Fig.6 (a) High-resolution XPS spectra of R-Cu3P/Cu, O-Cu3P/Cu and Cu3P/Cu[84]; (b) Schematic diagram of ZnO flame synthesis device with carbon doping defect[85]; (c) SEM, HRTEM images and EDS spectra of PNC[87]; (d) Catalytic performance of pCNTA[88]
图7 (a)ECO2RR形成CH4示意图;(b) Cu(211)表面CO2转化为CH4自由能图[94]
Fig.7 (a) Schematic diagram of ECO2RR formation of CH4; (b) Free energy diagram of CO2 conversion to CH4 over Cu(211) surfaces[94]
图8 (a) Cu/Al2O3 SAC和Cu/Cr2O3 SAC上的ECO2RR的自由能图[100];(b) Cu SAs/GDY形成的示意图及形貌表征[101];(c) BNC-Cu的SEM、TEM图像以及EDS谱图[102];(d) 不同尺寸的八面体Cu纳米晶体TEM图像以及相应尺寸统计分析[104];(e) 疏水碳涂层铜核壳结构及其催化机理示意图[105];(f) tw-Cu催化剂的结构表征[106]
Fig.8 (a) Free energy plots of ECO2RR on Cu/Al2O3 SAC and Cu/Cr2O3 SAC[100]; (b) Schematic diagram and morphological characterization of Cu SAs/GDY formation[101]; (c) SEM, TEM images and EDS spectra of BNC-Cu[102]; (d) TEM images of octahedral Cu nanocrystals of different sizes and statistical analysis of corresponding sizes[104]; (e) Schematic diagram of hydrophobic carbon-coated copper core-shell structure and its catalytic mechanism[105]; (f) Structural characterization of tw-Cu catalysts[106]
图9 (a) CuAg NWs的制备示意图[108];(b) CuPd催化剂在不同比例下的形态演变[109];(c) 一锅法合成SnCu x O2+x @MFI的示意图[110];(d) Cu-CeO x 和CuO/CeO2在不同电势下的原位ATR-IR光谱[111]
Fig.9 (a) Schematic of preparing CuAg NWs[108]; (b) Schematic diagram and morphological characterization of Cu SAs/GDY formation[109]; (c) Schematic diagram of the synthesis of SnCu x O2+x @MFI by one-pot method[110]; (d) In situ ATR-IR spectra on Cu-CeO x and CuO/CeO2 at different potentials[111]
图10 (a) ECO2RR形成C2H4示意图;(b) Cu(111)表面CO2转化为C2H4自由能图[123]
Fig.10 (a) Schematic diagram of ECO2RR formation of C2H4; (b) Free energy diagram of CO2 conversion to C2H4 over Cu(111) surfaces[123]
图11 (a) 用FS-ALD生成Al2O3包覆的Cu纳米晶体的示意及性能[128];(b) C2H4在Cu2O不同晶面上形成及性能[129];(c)立方Cu2O和支链CuO的性能 [130];(d) 具有不同曲率的铜基催化剂的制备过程示意图 [131];(e) Cu 纳米立方体和纳米球体的TEM图像及XRD谱图[132];(f) 44 nm Cu NC立方体的平面位点和边缘位点之间存在最佳平衡[132]
Fig.11 (a) Schematic diagram and performance of Al2O3 coated Cu nanocrystals generated by FS-ALD[128]; (b) Formation and properties of C2H4 on different crystal planes of Cu2O[129]; (c) Performance of cubic Cu2O and branched CuO [130]; (d) Schematic diagram of the preparation process of copper-based catalysts with different curvatures [131]; (e) TEM images and XRD patterns of Cu nanocubes and nanospheres[132]; (f) An optimal balance between planar and edge sites of the 44 nm Cu NC cube[132]
图12 (a) Cu纳米线的TEM图像[133];(b) Al-Cu2O 的XPS谱图[134];(c) CuLaCs三金属电催化剂性能[135];(d) CuAg双金属催化剂的形态及物相表征[137];(e) Cu/ZnO串联催化剂的性能[138];(f) Zn@Cu-NWAs 的合成示意图 [144];(g) xFe2O3-N@CN的合成示意图[124]
Fig.12 (a) TEM image of Cu nanowires[133]; (b) XPS spectra of Al-Cu2O[134]; (c) Properties of CuLaCs trimetallic electrocatalysts[135]; (d) Morphological characterization of CuAg bimetallic catalyst[137]; (e) Performance of Cu/ZnO tandem catalysts[138]; (f) Synthesis diagram of Zn@Cu-NWAs[144]; (g) Synthesis diagram of xFe2O3-N@CN[124]
1 | Roy S, Cherevotan A, Peter S C. Thermochemical CO2 hydrogenation to single carbon products: scientific and technological challenges[J]. ACS Energy Letters, 2018, 3(8): 1938-1966. |
2 | Smith M R, Myers S S. Impact of anthropogenic CO2 emissions on global human nutrition[J]. Nature Climate Change, 2018, 8: 834-839. |
3 | De Luna P, Hahn C, Higgins D, et al. What would it take for renewably powered electrosynthesis to displace petrochemical processes?[J]. Science, 2019, 364(6438): eaav3506. |
4 | Wang S, Lv L, Zhang B, et al. Multi objective programming model of low-cost path for China’s peaking carbon dioxide emissions and carbon neutrality[J]. Research of Environmental Sciences, 2021, 34(9): 2044-2055. |
5 | Fan Q, Zhang M L, Jia M W, et al. Electrochemical CO2 reduction to C2+ species: heterogeneous electrocatalysts, reaction pathways, and optimization strategies[J]. Materials Today Energy, 2018, 10: 280-301. |
6 | Khan I. Strategies for improved electrochemical CO2 reduction to value-added products by highly anticipated copper-based nanoarchitectures[J]. The Chemical Record, 2022, 22(1): e202100219. |
7 | Li H W, Tang Z G, He Z M, et al. Structure-activity relationship for CO2 absorbent[J]. Energy, 2020, 197: 117166. |
8 | Rehman A, Nazir G, Rhee K Y, et al. Electrocatalytic and photocatalytic sustainable conversion of carbon dioxide to value-added chemicals: state-of-the-art progress, challenges, and future directions[J]. Journal of Environmental Chemical Engineering, 2022, 10(5): 108219. |
9 | Sun M Z, Wong H H, Wu T, et al. Entanglement of spatial and energy segmentation for C1 pathways in CO2 reduction on carbon skeleton supported atomic catalysts[J]. Advanced Energy Materials, 2022, 12(14): 2103781. |
10 | Zhang B, Wang L L, Li D, et al. Tandem strategy for electrochemical CO2 reduction reaction[J]. Chem Catalysis, 2022, 2(12): 3395-3429. |
11 | Zhang J W, Sewell C D, Huang H W, et al. Closing the anthropogenic chemical carbon cycle toward a sustainable future via CO2 valorization[J]. Advanced Energy Materials, 2021, 11(47): 2102767. |
12 | Franco F, Rettenmaier C, Jeon H S, et al. Transition metal-based catalysts for the electrochemical CO2 reduction: from atoms and molecules to nanostructured materials[J]. Chemical Society Reviews, 2020, 49(19): 6884-6946. |
13 | He C H, Duan D L, Low J, et al. Cu2- x S derived copper nanoparticles: a platform for unraveling the role of surface reconstruction in efficient electrocatalytic CO2-to-C2H4 conversion[J]. Nano Research, 2023, 16(4): 4494-4498. |
14 | Li R, Xiang K, Liu Z Y, et al. Recent advances in upgrading of low-cost oxidants to value-added products by electrocatalytic reduction reaction[J]. Advanced Functional Materials, 2022, 32(46): 2208212. |
15 | Wijaya D T, Lee C W. Metal-organic framework catalysts: a versatile platform for bioinspired electrochemical conversion of carbon dioxide[J]. Chemical Engineering Journal, 2022, 446: 137311. |
16 | Zhang J W, Zeng G M, Chen L L, et al. Tuning the reaction path of CO2 electroreduction reaction on indium single-atom catalyst: insights into the active sites[J]. Nano Research, 2022, 15(5): 4014-4022. |
17 | Aresta M, Dibenedetto A, Angelini A. Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. Technological use of CO2 [J]. Chemical Reviews, 2014, 114(3): 1709-1742. |
18 | Kibria M G, Edwards J P, Gabardo C M, et al. Electrochemical CO2 reduction into chemical feedstocks: from mechanistic electrocatalysis models to system design[J]. Advanced Materials, 2019, 31(31): 1807166. |
19 | Pan F P, Yang Y. Designing CO2 reduction electrode materials by morphology and interface engineering[J]. Energy & Environmental Science, 2020, 13(8): 2275-2309. |
20 | Qiao J L, Liu Y Y, Hong F, et al. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels[J]. Chemical Society Reviews, 2014, 43(2): 631-675. |
21 | Feng J P, Zeng S J, Feng J Q, et al. CO2 electroreduction in ionic liquids: a review[J]. Chinese Journal of Chemistry, 2018(10):961-970. |
22 | Glockler G. Carbon-oxygen bond energies and bond distances[J]. The Journal of Physical Chemistry, 1958, 62(9): 1049-1054. |
23 | Jin S, Hao Z M, Zhang K, et al. Advances and challenges for the electrochemical reduction of CO2 to CO: from fundamentals to industrialization[J]. Angewandte Chemie International Edition, 2021, 60(38): 20627-20648. |
24 | Ren C J, Ni W, Li H D. Recent progress in electrocatalytic reduction of CO2 [J]. Catalysts, 2023, 13(4): 644. |
25 | Wang G X, Chen J X, Ding Y C, et al. Electrocatalysis for CO2 conversion: from fundamentals to value-added products[J]. Chemical Society Reviews, 2021, 50(8): 4993-5061. |
26 | 李泽洋, 杨宇森, 卫敏. 二氧化碳还原电催化剂的结构设计及性能研究进展[J]. 化学学报, 2022, 80(2): 199-213. |
Li Z Y, Yang Y S, Wei M. Structural design and performance of electrocatalysts for carbon dioxide reduction: a review[J]. Acta Chimica Sinica, 2022, 80(2): 199-213. | |
27 | Bellato F, Ferri M, Zhu D X, et al. Indium arsenide quantum dot derived catalyst for selective CO2 electrochemical reduction to formate[J]. ACS Energy Letters, 2024, 9(3): 1097-1102. |
28 | Huang J Z, Hu Q, Guo X R, et al. Rethinking Co(CO3)0.5(OH)·0.11H2O: a new property for highly selective electrochemical reduction of carbon dioxide to methanol in aqueous solution[J]. Green Chemistry, 2018, 20(13): 2967-2972. |
29 | Zhang K Y, Wang J, Zhang W N, et al. Regulated surface electronic states of CuNi nanoparticles through metal-support interaction for enhanced electrocatalytic CO2 reduction to ethanol[J]. Small, 2023, 19(32): e2300281. |
30 | Zhang T, Lu X Y, Qi W, et al. Efficient electroreduction of CO2 to CO on silver single-atom catalysts: activity enhancement through coordinated modulation of polyaniline[J]. Applied Catalysis B: Environment and Energy, 2024, 349: 123896. |
31 | An C H, Wu S, Huang R, et al. Cooperated catalytic mechanism of atomically dispersed binary Cu-N4 and Zn-N4 in N-doped carbon materials for promoting electrocatalytic CO2 reduction to CH4 [J]. Chemical Engineering Journal, 2023, 471: 144618. |
32 | Zhang B X, Zhang J L, Hua M L, et al. Highly electrocatalytic ethylene production from CO2 on nanodefective Cu nanosheets[J]. Journal of the American Chemical Society, 2020, 142(31): 13606-13613. |
33 | 李鑫, 曾少娟, 彭奎霖, 等. CO2电催化还原制合成气研究进展及趋势[J]. 化工学报, 2023, 74(1): 313-329. |
Li X, Zeng S J, Peng K L, et al. Research progress and tendency of CO2 electrocatalytic reduction to syngas[J]. CIESC Journal, 2023, 74(1): 313-329. | |
34 | Wall D, Kepplinger W, Millner R. Smelting-reduction export gas as syngas in the chemical industry[J]. Steel Research International, 2011, 82(8): 926-933. |
35 | Xu D Z, Li K K, Jia B H, et al. Electrocatalytic CO2 reduction towards industrial applications[J]. Carbon Energy, 2023, 5(1): e230. |
36 | Andrei V, Reuillard B, Reisner E. Bias-free solar syngas production by integrating a molecular cobalt catalyst with perovskite-BiVO4 tandems[J]. Nature Materials, 2020, 19(2): 189-194. |
37 | Yentekakis I V, Panagiotopoulou P, Artemakis G. A review of recent efforts to promote dry reforming of methane (DRM) to syngas production via bimetallic catalyst formulations[J]. Applied Catalysis B: Environmental, 2021, 296: 120210. |
38 | Jiao F, Li J J, Pan X L, et al. Selective conversion of syngas to light olefins[J]. Science, 2016, 351(6277): 1065-1068. |
39 | Hickman D A, Schmidt L D. Production of syngas by direct catalytic oxidation of methane[J]. Science, 1993, 259(5093): 343-346. |
40 | Binte Mohamed D K, Veksha A, Ha Q L M, et al. Advanced Ni tar reforming catalysts resistant to syngas impurities: current knowledge, research gaps and future prospects[J]. Fuel, 2022, 318: 123602. |
41 | Nie X W, Esopi M R, Janik M J, et al. Selectivity of CO2 reduction on copper electrodes: the role of the kinetics of elementary steps[J]. Angewandte Chemie International Edition, 2013, 52(9): 2459-2462. |
42 | Fu H Q, Liu J X, Bedford N M, et al. Synergistic Cr2O3@Ag heterostructure enhanced electrocatalytic CO2 reduction to CO[J]. Advanced Materials, 2022, 34(29): 2202854. |
43 | Lu Q, Rosen J, Zhou Y, et al. A selective and efficient electrocatalyst for carbon dioxide reduction[J]. Nature Communications, 2014, 5: 3242. |
44 | Hansen H A, Varley J B, Peterson A A, et al. Understanding trends in the electrocatalytic activity of metals and enzymes for CO2 reduction to CO[J]. The Journal of Physical Chemistry Letters, 2013, 4(3): 388-392. |
45 | Hatsukade T, Kuhl K P, Cave E R, et al. Insights into the electrocatalytic reduction of CO₂ on metallic silver surfaces[J]. Physical Chemistry Chemical Physics: PCCP, 2014, 16(27): 13814-13819. |
46 | Feaster J T, Shi C, Cave E R, et al. Understanding selectivity for the electrochemical reduction of carbon dioxide to formic acid and carbon monoxide on metal electrodes[J]. ACS Catalysis, 2017, 7(7): 4822-4827. |
47 | Hua Y N, Wang J Y, Min T, et al. Electrochemical CO2 conversion towards syngas: recent catalysts and improving strategies for ratio-tunable syngas[J]. Journal of Power Sources, 2022, 535: 231453. |
48 | Chen C Z, Zhang B, Zhong J H, et al. Selective electrochemical CO2 reduction over highly porous gold films[J]. Journal of Materials Chemistry A, 2017, 5(41): 21955-21964. |
49 | Zhu W L, Michalsky R, Metin Ö, et al. Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO[J]. Journal of the American Chemical Society, 2013, 135(45): 16833-16836. |
50 | Welch A J, DuChene J S, Tagliabue G, et al. Nanoporous gold as a highly selective and active carbon dioxide reduction catalyst[J]. ACS Applied Energy Materials, 2019, 2(1): 164-170. |
51 | Zhu W L, Zhang Y J, Zhang H Y, et al. Active and selective conversion of CO2 to CO on ultrathin Au nanowires[J]. Journal of the American Chemical Society, 2014, 136(46): 16132-16135. |
52 | Hoshi N, Kato M, Hori Y. Electrochemical reduction of CO2 on single crystal electrodes of silver Ag(111), Ag(100) and Ag(110)[J]. Journal of Electroanalytical Chemistry, 1997, 440(1/2): 283-286. |
53 | Liu S Q, Wu S W, Gao M R, et al. Hollow porous Ag spherical catalysts for highly efficient and selective electrocatalytic reduction of CO2 to CO[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(17): 14443-14450. |
54 | Liu S B, Tao H B, Zeng L, et al. Shape-dependent electrocatalytic reduction of CO2 to CO on triangular silver nanoplates[J]. Journal of the American Chemical Society, 2017, 139(6): 2160-2163. |
55 | Le Tri Nguyen D, Kim Y, Hwang Y J, et al. Progress in development of electrocatalyst for CO2 conversion to selective CO production[J]. Carbon Energy, 2020, 2(1): 72-98. |
56 | Huang H W, Jia H H, Liu Z, et al. Understanding of strain effects in the electrochemical reduction of CO2: using Pd nanostructures as an ideal platform[J]. Angewandte Chemie International Edition, 2017, 56(13): 3594-3598. |
57 | Gao D F, Zhou H, Wang J, et al. Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles[J]. Journal of the American Chemical Society, 2015, 137(13): 4288-4291. |
58 | Le Tri Nguyen D, Jee M S, Won D H, et al. Selective CO2 reduction on zinc electrocatalyst: the effect of zinc oxidation state induced by pretreatment environment[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(12): 11377-11386. |
59 | Lu Y, Han B, Tian C C, et al. Efficient electrocatalytic reduction of CO2 to CO on an electrodeposited Zn porous network[J]. Electrochemistry Communications, 2018, 97: 87-90. |
60 | Rosen J, Hutchings G S, Lu Q, et al. Electrodeposited Zn dendrites with enhanced CO selectivity for electrocatalytic CO2 reduction[J]. ACS Catalysis, 2015, 5(8): 4586-4591. |
61 | Won D H, Shin H, Koh J, et al. Highly efficient, selective, and stable CO2 electroreduction on a hexagonal Zn catalyst[J]. Angewandte Chemie International Edition, 2016, 55(32): 9297-9300. |
62 | Clark E L, Hahn C, Jaramillo T F, et al. Electrochemical CO2 reduction over compressively strained CuAg surface alloys with enhanced multi-carbon oxygenate selectivity[J]. Journal of the American Chemical Society, 2017, 139(44): 15848-15857. |
63 | Vasileff A, Xu C C, Jiao Y, et al. Surface and interface engineering in copper-based bimetallic materials for selective CO2 electroreduction[J]. Chem, 2018, 4(8): 1809-1831. |
64 | Ren W H, Tan X, Qu J T, et al. Isolated copper-tin atomic interfaces tuning electrocatalytic CO2 conversion[J]. Nature Communications, 2021, 12(1): 1449. |
65 | Rasul S, Anjum D H, Jedidi A, et al. A highly selective copper-indium bimetallic electrocatalyst for the electrochemical reduction of aqueous CO2 to CO[J]. Angewandte Chemie International Edition, 2015, 54(7): 2146-2150. |
66 | Li J W, Zeng H L, Dong X, et al. Selective CO2 electrolysis to CO using isolated antimony alloyed copper[J]. Nature Communications, 2023, 14(1): 340. |
67 | Sharma P P, Wu J J, Yadav R M, et al. Nitrogen-doped carbon nanotube arrays for high-efficiency electrochemical reduction of CO2: on the understanding of defects, defect density, and selectivity[J]. Angewandte Chemie International Edition, 2015, 54(46): 13701-13705. |
68 | Wu J J, Yadav R M, Liu M J, et al. Achieving highly efficient, selective, and stable CO2 reduction on nitrogen-doped carbon nanotubes[J]. ACS Nano, 2015, 9(5): 5364-5371. |
69 | Li C, Wang Y W, Xiao N, et al. Nitrogen-doped porous carbon from coal for high efficiency CO2 electrocatalytic reduction[J]. Carbon, 2019, 151: 46-52. |
70 | Han P, Yu X M, Yuan D, et al. Defective graphene for electrocatalytic CO2 reduction[J]. Journal of Colloid and Interface Science, 2019, 534: 332-337. |
71 | Kim D, Resasco J, Yu Y, et al. Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles[J]. Nature Communications, 2014, 5: 4948. |
72 | Han Y J, Wang Z T, Han X T, et al. Selectively converting carbon dioxide to syngas over intermetallic AuCu catalysts[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(6): 2609-2615. |
73 | Graciani J, Mudiyanselage K, Xu F, et al. Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO2 [J]. Science, 2014, 345(6196): 546-550. |
74 | Marques Mota F, Le Tri Nguyen D, Lee J E, et al. Toward an effective control of the H2 to CO ratio of syngas through CO2 electroreduction over immobilized gold nanoparticles on layered titanate nanosheets[J]. ACS Catalysis, 2018, 8(5): 4364-4374. |
75 | Li H, Wen P, Itanze D S, et al. Colloidal silver diphosphide (AgP2) nanocrystals as low overpotential catalysts for CO2 reduction to tunable syngas[J]. Nature Communications, 2019, 10(1): 5724. |
76 | Tang H L, Su Y, Zhang B S, et al. Classical strong metal-support interactions between gold nanoparticles and titanium dioxide[J]. Science Advances, 2017, 3(10): e1700231. |
77 | Kim Y E, Kim B, Lee W, et al. Highly tunable syngas production by electrocatalytic reduction of CO2 using Ag/TiO2 catalysts[J]. Chemical Engineering Journal, 2021, 413: 127448. |
78 | Trickett C A, Helal A, Al-Maythalony B A, et al. The chemistry of metal-organic frameworks for CO2 capture, regeneration and conversion[J]. Nature Reviews Materials, 2017, 2(8): 17045. |
79 | Usman M, Iqbal N, Noor T, et al. Advanced strategies in metal-organic frameworks for CO2 capture and separation[J]. The Chemical Record, 2022, 22(7): e202100230. |
80 | Usman M, Suliman M H. Silver-doped zeolitic imidazolate framework (Ag@ZIF-8): an efficient electrocatalyst for CO2 conversion to syngas[J]. Catalysts, 2023, 13(5): 867. |
81 | He H C, Xia D, Yu X, et al. Pd-SnO2 interface enables synthesis of syngas with controllable H2/CO ratios by electrocatalytic reduction of CO2 [J]. Applied Catalysis B: Environmental, 2022, 312: 121392. |
82 | Qin P Y, Yang S, Zhan P, et al. Two-dimensional PdMo curved nanosheets for tunable CO2 electrocatalytic reduction to syngas[J]. Cell Reports Physical Science, 2021, 2(11): 100619. |
83 | Huang P, Ci S Q, Wang G X, et al. High-activity Cu nanowires electrocatalysts for CO2 reduction[J]. Journal of CO2 Utilization, 2017, 20: 27-33. |
84 | Chang B, Zhang X G, Min Z J, et al. Efficient electrocatalytic conversion of CO2 to syngas for the Fischer-Tropsch process using a partially reduced Cu3P nanowire[J]. Journal of Materials Chemistry A, 2021, 9(33): 17876-17884. |
85 | Ma C, Zou X Y, Li A, et al. Rapid flame synthesis of carbon doped defective ZnO for electrocatalytic CO2 reduction to syngas[J]. Electrochimica Acta, 2022, 411: 140098. |
86 | Lamaison S, Wakerley D, Montero D, et al. Zn-Cu alloy nanofoams as efficient catalysts for the reduction of CO2 to syngas mixtures with a potential-independent H2/CO ratio[J]. ChemSusChem, 2019, 12(2): 511-517. |
87 | Chen K Y, Deng J, Zhao J, et al. Electrocatalytic production of tunable syngas from CO2 via a metal-free porous nitrogen-doped carbon[J]. Industrial & Engineering Chemistry Research, 2021, 60(20): 7739-7745. |
88 | Ji Y, Shi Y M, Liu C B, et al. Plasma-regulated N-doped carbon nanotube arrays for efficient electrosynthesis of syngas with a wide CO/H2 ratio[J]. Science China Materials, 2020, 63(11): 2351-2357. |
89 | Alvarez-Galvan M C, Mota N, Ojeda M, et al. Direct methane conversion routes to chemicals and fuels[J]. Catalysis Today, 2011, 171(1): 15-23. |
90 | Williams C, Carter J H, Dummer N F, et al. Selective oxidation of methane to methanol using supported AuPd catalysts prepared by stabilizer-free sol-immobilization[J]. ACS Catalysis, 2018, 8(3): 2567-2576. |
91 | Caballero A, Pérez P J. Methane as raw material in synthetic chemistry: the final frontier[J]. Chemical Society Reviews, 2013, 42(23): 8809-8820. |
92 | Schüth F. Making more from methane[J]. Science, 2019, 363(6433): 1282-1283. |
93 | Li H H, Yu S H. CO2-to-methane electroreduction gets a helping hand[J]. Matter, 2022, 5(5): 1337-1339. |
94 | Kim S K, Zhang Y J, Bergstrom H, et al. Understanding the low overpotential production of CH4 from CO2 on Mo2C catalysts[J]. ACS Catalysis, 2016, 6(3): 2003-2013. |
95 | Lei Y R, Wang Z, Bao A, et al. Recent advances on electrocatalytic CO2 reduction to resources: target products, reaction pathways and typical catalysts[J]. Chemical Engineering Journal, 2023, 453: 139663. |
96 | Zhang H C, Chang X X, Chen J G, et al. Computational and experimental demonstrations of one-pot tandem catalysis for electrochemical carbon dioxide reduction to methane[J]. Nature Communications, 2019, 10(1): 3340. |
97 | Hori Y, Kikuchi K, Suzuki S. Production of CO and CH4 in electrochemical reduction of CO2 at metal electrodes in aqueous hydrogencarbonate solution[J]. Chemistry Letters, 1985, 14(11): 1695-1698. |
98 | Cai Y M, Fu J J, Zhou Y, et al. Insights on forming N, O-coordinated Cu single-atom catalysts for electrochemical reduction CO2 to methane[J]. Nature Communications, 2021, 12(1): 586. |
99 | Wang Q Y, Cai C Y, Dai M Y, et al. Recent advances in strategies for improving the performance of CO2 reduction reaction on single atom catalysts[J]. Small Science, 2021, 1(2): 2000028. |
100 | Chen S H, Wang B Q, Zhu J X, et al. Lewis acid site-promoted single-atomic Cu catalyzes electrochemical CO2 methanation[J]. Nano Letters, 2021, 21(17): 7325-7331. |
101 | Shi G D, Xie Y L, Du L L, et al. Constructing Cu—C bonds in a graphdiyne-regulated Cu single-atom electrocatalyst for CO2 reduction to CH4 [J]. Angewandte Chemie International Edition, 2022, 61(23): e202203569. |
102 | Dai Y Z, Li H, Wang C H, et al. Manipulating local coordination of copper single atom catalyst enables efficient CO2-to-CH4 conversion[J]. Nature Communications, 2023, 14(1): 3382. |
103 | Sun Z Y, Hu Y N, Zhou D N, et al. Factors influencing the performance of copper-bearing catalysts in the CO2 reduction system[J]. ACS Energy Letters, 2021, 6(11): 3992-4022. |
104 | Iyengar P, Huang J F, De Gregorio G L, et al. Size dependent selectivity of Cu nano-octahedra catalysts for the electrochemical reduction of CO2 to CH4 [J]. Chemical Communications, 2019, 55(60): 8796-8799. |
105 | Zhang X Y, Li W J, Wu X F, et al. Selective methane electrosynthesis enabled by a hydrophobic carbon coated copper core-shell architecture[J]. Energy & Environmental Science, 2022, 15(1): 234-243. |
106 | Cai J, Zhao Q, Hsu W Y, et al. Highly selective electrochemical reduction of CO2 into methane on nanotwinned Cu[J]. Journal of the American Chemical Society, 2023, 145(16): 9136-9143. |
107 | Torelli D A, Francis S A, Crompton J C, et al. Nickel-gallium-catalyzed electrochemical reduction of CO2 to highly reduced products at low overpotentials[J]. ACS Catalysis, 2016, 6(3): 2100-2104. |
108 | Choi C, Cai J, Lee C, et al. Intimate atomic Cu-Ag interfaces for high CO2RR selectivity towards CH4 at low over potential[J]. Nano Research, 2021, 14(10): 3497-3501. |
109 | Zhu W J, Zhang L, Yang P P, et al. Morphological and compositional design of Pd-Cu bimetallic nanocatalysts with controllable product selectivity toward CO2 electroreduction[J]. Small, 2018, 14(7): 1703314. |
110 | Zhu Y B, Li P Z, Yang X J, et al. Confinement of SnCu x O2+ x nanoclusters in zeolites for high-efficient electrochemical carbon dioxide reduction[J]. Advanced Energy Materials, 2023, 13(24): 2204143. |
111 | Zhou X L, Shan J Q, Chen L, et al. Stabilizing Cu2+ ions by solid solutions to promote CO2 electroreduction to methane[J]. Journal of the American Chemical Society, 2022, 144(5): 2079-2084. |
112 | Bushuyev O S, De Luna P, Dinh C T, et al. What should we make with CO2 and how can we make it?[J]. Joule, 2018, 2(5): 825-832. |
113 | Zhi X, Jiao Y, Zheng Y, et al. Directing the selectivity of CO2 electroreduction to target C2 products via non-metal doping on Cu surfaces[J]. Journal of Materials Chemistry A, 2021, 9(10): 6345-6351. |
114 | Gorbunov D N, Terenina M V, Kardasheva Y S, et al. Oxo processes involving ethylene (a review)[J]. Petroleum Chemistry, 2017, 57(12): 1137-1140. |
115 | Najari S, Saeidi S, Concepcion P, et al. Oxidative dehydrogenation of ethane: catalytic and mechanistic aspects and future trends[J]. Chemical Society Reviews, 2021, 50(7): 4564-4605. |
116 | Adrian R, Lieven G, Anastasiya B, et al. Metal organic framework-derived iron catalysts for the direct hydrogenation of CO2 to short chain olefins[J]. ACS Catalysis, 2018, 8(10): 9174-9182. |
117 | Jadhav S G, Vaidya P D, Bhanage B M, et al. Catalytic carbon dioxide hydrogenation to methanol: a review of recent studies[J]. Chemical Engineering Research and Design, 2014, 92(11): 2557-2567. |
118 | Yarulina I, Chowdhury A D, Meirer F, et al. Recent trends and fundamental insights in the methanol-to-hydrocarbons process[J]. Nature Catalysis, 2018, 1: 398-411. |
119 | Yarulina I, De Wispelaere K, Bailleul S, et al. Publisher correction: structure-performance descriptors and the role of Lewis acidity in the methanol-to-propylene process[J]. Nature Chemistry, 2018, 10(8): 897. |
120 | Gao D F, Arán-Ais R M, Jeon H S, et al. Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products[J]. Nature Catalysis, 2019, 2: 198-210. |
121 | Nitopi S, Bertheussen E, Scott S B, et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte[J]. Chemical Reviews, 2019, 119(12): 7610-7672. |
122 | Chen Y J, Miao R K, Yu C, et al. Catalyst design for electrochemical CO2 reduction to ethylene[J]. Matter, 2024, 7(1): 25-37. |
123 | Guan A X, Yang C, Wang Q H, et al. Atomic-level copper sites for selective CO2 electroreduction to hydrocarbon[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(40): 13536-13544. |
124 | Chen P, Zhang P, Kang X C, et al. Efficient electrocatalytic reduction of CO2 to ethane over nitrogen-doped Fe2O3 [J]. Journal of the American Chemical Society, 2022, 144(32): 14769-14777. |
125 | Ren D, Fong J, Yeo B S. The effects of currents and potentials on the selectivities of copper toward carbon dioxide electroreduction[J]. Nature Communications, 2018, 9(1): 925. |
126 | Montoya J H, Shi C, Chan K R, et al. Theoretical insights into a CO dimerization mechanism in CO2 electroreduction[J]. The Journal of Physical Chemistry Letters, 2015, 6(11): 2032-2037. |
127 | Peterson A A, Nørskov J K. Activity descriptors for CO2 electroreduction to methane on transition-metal catalysts[J]. The Journal of Physical Chemistry Letters, 2012, 3(2): 251-258. |
128 | Li H, Yu P P, Lei R B, et al. Facet-selective deposition of ultrathin Al2O3 on copper nanocrystals for highly stable CO2 electroreduction to ethylene[J]. Angewandte Chemie International Edition, 2021, 60(47): 24838-24843. |
129 | Gao Y G, Wu Q, Liang X Z, et al. Cu2O nanoparticles with both{100} and {111} facets for enhancing the selectivity and activity of CO2 electroreduction to ethylene[J]. Advanced Science, 2020, 7(6): 1902820. |
130 | Kim J, Choi W, Park J W, et al. Branched copper oxide nanoparticles induce highly selective ethylene production by electrochemical carbon dioxide reduction[J]. Journal of the American Chemical Society, 2019, 141(17): 6986-6994. |
131 | Li H, Zhou H M, Zhou Y J, et al. Electric-field promoted C-C coupling over Cu nanoneedles for CO2 electroreduction to C2 products[J]. Chinese Journal of Catalysis, 2022, 43(2): 519-525. |
132 | Loiudice A, Lobaccaro P, Kamali E A, et al. Tailoring copper nanocrystals towards C2 products in electrochemical CO2 reduction[J]. Angewandte Chemie International Edition, 2016, 55(19): 5789-5792. |
133 | Zhang Y, Si Z B, Du H S, et al. Selective CO2 reduction to ethylene over a wide potential window by copper nanowires with high density of defects[J]. Inorganic Chemistry, 2022, 61(50): 20666-20673. |
134 | Li S X, Sha X L, Gao X F, et al. Al-doped octahedral Cu2O nanocrystal for electrocatalytic CO2 reduction to produce ethylene[J]. International Journal of Molecular Sciences, 2023, 24(16): 12680. |
135 | Jia S Q, Zhu Q G, Wu H H, et al. Preparation of trimetallic electrocatalysts by one-step co-electrodeposition and efficient CO2 reduction to ethylene[J]. Chemical Science, 2022, 13(25): 7509-7515. |
136 | Yang Y S, Tan Z H, Zhang J L. Electrocatalytic carbon dioxide reduction to ethylene over copper-based catalytic systems[J]. Chemistry: An Asian Journal, 2022, 17(24): e202200893. |
137 | Jeon Y E, Ko Y N, Kim J, et al. Selective production of ethylene from CO2 over CuAg tandem electrocatalysts[J]. Journal of Industrial and Engineering Chemistry, 2022, 116: 191-198. |
138 | Zhang T Y, Li Z Y, Zhang J F, et al. Enhance CO2 to C2+ products yield through spatial management of CO transport in Cu/ZnO tandem electrodes[J]. Journal of Catalysis, 2020, 387: 163-169. |
139 | Li F W, Li Y C, Wang Z Y, et al. Cooperative CO2 to ethanol conversion via enriched intermediates at molecule-metal catalyst interfaces[J]. Nature Catalysis, 2020, 3(1): 75-82. |
140 | Kong X D, Zhao J K, Ke J W, et al. Understanding the effect of *CO coverage on C-C coupling toward CO2 electroreduction[J]. Nano Letters, 2022, 22(9): 3801-3808. |
141 | Kong X D, Wang C, Xu Z F, et al. Enhancing CO2 electroreduction selectivity toward multicarbon products via tuning the local H2O/CO2 molar ratio[J]. Nano Letters, 2022, 22(19): 8000-8007. |
142 | Kim C, Bui J C, Luo X Y, et al. Tailored catalyst microenvironments for CO2 electroreduction to multicarbon products on copper using bilayer ionomer coatings[J]. Nature Energy, 2021, 6(11): 1026-1034. |
143 | Wang X, Wang Z Y, García de Arquer F P, et al. Efficient electrically powered CO2-to-ethanol via suppression of deoxygenation[J]. Nature Energy, 2020, 5(6): 478-486. |
144 | Zhang X W, Ren B H, Li H, et al. Regulating ethane and ethylene synthesis by proton corridor microenvironment for CO2 electrolysis[J]. Journal of Energy Chemistry, 2023, 87: 368-377. |
145 | Gao P, Li S G, Bu X N, et al. Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst[J]. Nature Chemistry, 2017, 9(10): 1019-1024. |
146 | Sanz-Pérez E S, Murdock C R, Didas S A, et al. Direct capture of CO2 from ambient air[J]. Chemical Reviews, 2016, 116(19): 11840-11876. |
147 | Lai W C, Qiao Y, Zhang J W, et al. Design strategies for markedly enhancing energy efficiency in the electrocatalytic CO2 reduction reaction[J]. Energy & Environmental Science, 2022, 15(9): 3603-3629. |
148 | Moragues T, Mitchell S, Akl D F, et al. Droplet-based microfluidics platform for the synthesis of single atom heterogeneous catalysts[J]. Small Structures, 2023, 4(4): 2200284. |
149 | Jin L, Seifitokaldani A. In situ spectroscopic methods for electrocatalytic CO2 reduction[J]. Catalysts, 2020, 10(5): 481. |
150 | Handoko A D, Wei F X, Jenndy, et al. Understanding heterogeneous electrocatalytic carbon dioxide reduction through operando techniques[J]. Nature Catalysis, 2018, 1(12): 922-934. |
151 | König M, Vaes J, Klemm E, et al. Solvents and supporting electrolytes in the electrocatalytic reduction of CO2 [J]. iScience, 2019, 19: 135-160. |
152 | Gurudayal, Perone D, Malani S, et al. Sequential cascade electrocatalytic conversion of carbon dioxide to C-C coupled products[J]. ACS Applied Energy Materials, 2019, 2(6): 4551-4559. |
153 | Zheng W Z, Yang X X, Li Z J, et al. Designs of tandem catalysts and cascade catalytic systems for CO2 upgrading[J]. Angewandte Chemie International Edition, 2023, 62(43): e202307283. |
154 | Ozden A, Wang Y H, Li F W, et al. Cascade CO2 electroreduction enables efficient carbonate free production of ethylene[J]. Joule, 2021, 5(3): 706-719. |
155 | Lee M G, Li X Y, Ozden A, et al. Selective synthesis of butane from carbon monoxide using cascade electrolysis and thermocatalysis at ambient conditions[J]. Nature Catalysis, 2023, 6(4): 310-318. |
156 | Guo S Y, Asset T, Atanassov P. Catalytic hybrid electrocatalytic/biocatalytic cascades for carbon dioxide reduction and valorization[J]. ACS Catalysis, 2021, 11(9): 5172-5188. |
[1] | 赵亭亭, 鄢立祥, 唐福利, 肖敏之, 谭烨, 宋刘斌, 肖忠良, 李灵均. 光辅助锂-二氧化碳电池催化剂的设计策略与反应机理研究进展[J]. 化工学报, 2024, 75(5): 1750-1764. |
[2] | 咸国义, 陈立芳, 漆志文. 基于DFT的环己酮肟液相贝克曼重排机理研究[J]. 化工学报, 2024, 75(1): 302-311. |
[3] | 叶凯, 刘香华, 姜月, 于颖, 赵亚飞, 庄烨, 郑进保, 陈秉辉. 低温等离子体协同CeO2/13X催化降解甲苯[J]. 化工学报, 2021, 72(7): 3706-3715. |
[4] | 朱倩倩, 靳海波, 郭晓燕, 何广湘, 马磊, 张荣月, 谷庆阳, 杨索和. H2O2/乙腈体系下MgO催化环己酮Baeyer-Villiger绿色氧化合成ε-己内酯的研究[J]. 化工学报, 2021, 72(5): 2638-2646. |
[5] | 王琴, 徐会金, 韩兴超, 赵长颖. MgO/Mg(OH)2热化学储热反应的第一性原理研究[J]. 化工学报, 2021, 72(3): 1242-1252. |
[6] | 王刚,段学志,袁渭康,周兴贵. 钛硅分子筛TS-1催化环氧丙烷异构反应的机理探究[J]. 化工学报, 2021, 72(10): 5150-5158. |
[7] | 张红, 唐留. p型掺杂剂Cp2Mg在MOCVD气相中的反应机理研究[J]. 化工学报, 2020, 71(7): 3000-3008. |
[8] | 金燕, 杨倩, 赵文斌, 胡宝山. 石墨烯化学气相沉积法可控制备的催化反应体系研究[J]. 化工学报, 2020, 71(6): 2564-2585. |
[9] | 王鲁丰, 钱鑫, 邓丽芳, 袁浩然. 氮气电化学合成氨催化剂研究进展[J]. 化工学报, 2019, 70(8): 2854-2863. |
[10] | 侯莲霞, 袁兆平, 乔鸿昌, 周静红, 周兴贵. Ni-W2C催化葡萄糖氢解制备低碳二元醇反应机理研究[J]. 化工学报, 2019, 70(4): 1390-1400. |
[11] | 梁天水, 王宗莹, 高坤, 李润婉, 王铮, 钟委, 赵军. 基于cup burner的含铁基添加剂超细水雾灭火有效性分析[J]. 化工学报, 2019, 70(3): 1236-1242. |
[12] | 张弋, 李建波, 王泉海, 卢啸风. 新型双流化床炉内NOx生成特性数值模拟[J]. 化工学报, 2018, 69(4): 1703-1713. |
[13] | 赵海谦, 高杏存, 刘城昊, 王忠华, 周伟, 高继慧. 基于Russell机理分光光度法检测液相体系·OH浓度的改进[J]. 化工学报, 2017, 68(7): 2805-2811. |
[14] | 李术艳, 孙莉娜, 沈淑君, 程天行, 程双华, 陈久喜. 二芳基二硫醚与硝基芳烃的反应[J]. 化工学报, 2017, 68(6): 2394-2398. |
[15] | 张红梅, 林枫, 任铭琪, 李金莲, 郝玉兰, 吴红军, 赵晶莹, 赵亮, 贺永殿. 小分子烃类蒸汽热裂解自由基机理模型研究方法的探讨[J]. 化工学报, 2017, 68(4): 1423-1433. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 426
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 878
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||