化工学报 ›› 2024, Vol. 75 ›› Issue (8): 2831-2839.DOI: 10.11949/0438-1157.20240056
曾港1,2(), 陈林1,3(), 杨董1,3, 袁海专2, 黄彦平4
收稿日期:
2024-01-02
修回日期:
2024-03-07
出版日期:
2024-08-25
发布日期:
2024-08-21
通讯作者:
陈林
作者简介:
曾港(1997—),男,博士研究生,zenggang@iet.cn
基金资助:
Gang ZENG1,2(), Lin CHEN1,3(), Dong YANG1,3, Haizhuan YUAN2, Yanping HUANG4
Received:
2024-01-02
Revised:
2024-03-07
Online:
2024-08-25
Published:
2024-08-21
Contact:
Lin CHEN
摘要:
准确测量超临界CO2的边界层流动传热特性,对于先进超临界CO2能源化工循环系统的设计和安全运行具有重要意义。研究基于一种改进的非接触式的相移激光干涉系统,探究了湍流条件下超临界CO2在矩形截面通道的边界热流场演化趋势。研究分析了基于长直通道局部热量输入条件下边界层密度场和温度场瞬态变化。这些定量信息可用于评估超临界CO2在不同热通量(q = 14057、5500、2014 W/m2)条件下的局部传热准则数。结果表明:局部边界热传输使边界流体密度快速下降了1.8 kg/m3;浮升力驱动边界流体与主流区域混合并迅速达到平衡状态;高热流条件下温度、密度梯度变化迅速且显著,显示了热边界层的快速形成。
中图分类号:
曾港, 陈林, 杨董, 袁海专, 黄彦平. 矩形通道内超临界CO2局部热流场可视化实验[J]. 化工学报, 2024, 75(8): 2831-2839.
Gang ZENG, Lin CHEN, Dong YANG, Haizhuan YUAN, Yanping HUANG. Visualization of local boundary thermal flow field of supercritical CO2 inside a rectangular channel[J]. CIESC Journal, 2024, 75(8): 2831-2839.
图2 局部点位边界传热可视化实验系统(系统放置在恒温室中,以保持稳定的环境温度;箭头表示流向)
Fig.2 Schematic diagram of the experimental system for visualizing local point boundary heat transfer (the system is housed in a specially designed thermostatic room for a stable temperature ambient; arrow for the flow direction)
工況 | p/MPa | ∆p/Pa | T/K | ρ/(kg/m3) | q/(W/m2) | Re |
---|---|---|---|---|---|---|
1 | 7.933 | 62.02 | 306.57 | 570.66 | 14057 | 33616 |
2 | 7.972 | 62.84 | 306.52 | 586.77 | 5500 | 33036 |
3 | 7.967 | 45.21 | 306.4 | 593.01 | 2014 | 27218 |
表1 实验参数工况
Table 1 Summary of experimental parameters of cases
工況 | p/MPa | ∆p/Pa | T/K | ρ/(kg/m3) | q/(W/m2) | Re |
---|---|---|---|---|---|---|
1 | 7.933 | 62.02 | 306.57 | 570.66 | 14057 | 33616 |
2 | 7.972 | 62.84 | 306.52 | 586.77 | 5500 | 33036 |
3 | 7.967 | 45.21 | 306.4 | 593.01 | 2014 | 27218 |
图3 稳定差压流动阶段(0~3 s)的瞬时可视化(工况1;加热t = 3~3.5 s;20 帧/秒)
Fig.3 Transient visualization in stabilized differential pressure flow (0—3 s) (case 1; heating t = 3—3.5 s; 20 fps)
图4 加热不稳定过程(3~10 s)的瞬时可视化(工况1;加热t = 3~3.5 s;20 帧/秒)
Fig.4 Transient visualization in heating adding processes (3—10 s) (case 1; heating t = 3—3.5 s; 20 fps)
图5 热平衡过程(3~10 s)的瞬时可视化(工况1;加热t = 3~3.5 s;帧率为20 帧/秒)
Fig.5 Transient visualization in re-equilibrium processes (3—10 s) (case 1; heating t = 3—3.5 s; 20 fps)
图6 加热不稳定过程(3~10 s)的瞬时可视化(工况3;加热t = 3~3.5 s;20 帧/秒)
Fig.6 Transient visualization in heating adding processes (3—10 s) (case 3; heating t = 3—3.5 s; 20 fps)
图7 垂直中心线上(x = 3.17 mm)的密度、温度定量曲线(工况1;加热t = 3~3.5 s;20 帧/秒)
Fig.7 Quantitative density and temperature profiles on the vertical centerline (x = 3.17 mm) (case 1; heating t = 3—3.5 s; 20 fps)
图8 垂直中心线上(x = 3.17 mm)的密度、温度定量曲线(工况3;加热t = 3~3.5 s;20 帧/秒)
Fig.8 Quantitative density and temperature profiles on the vertical centerline (x = 3.17 mm) (case 3; heating t = 3—3.5 s; 20 fps)
图9 脉冲加热下通道边界传热的局部Nusselt数变化(加热t = 3~3.5 s;20 帧/秒)
Fig.9 Evolution of the local Nusselt number for boundary heat transfer under pulsed heated channel (heating t = 3—3.5 s; 20 fps)
1 | Chen L. Handbook of Research on Advancements in Supercritical Fluids Applications for Sustainable Energy Systems[M]. Hershey: IGI Global, 2021. |
2 | Chen L, Zhang X R. Experiments on natural convective solar thermal achieved by supercritical CO2/dimethyl ether mixture fluid[J]. Journal of Solar Energy Engineering, 2014, 136(3): 031011. |
3 | Deev V I, Kharitonov V S, Baisov A M, et al. Heat transfer characteristics of water under supercritical conditions[J]. International Journal of Thermal Sciences, 2022, 171: 107238. |
4 | Chen L. Microchannel Flow Dynamic and Heat Transfer of Near-Critical Fluid[M]. Singapore: Springer Singapore, 2017. |
5 | Duffey R B, Pioro I L. Experimental heat transfer of supercritical carbon dioxide flowing inside channels (survey)[J]. Nuclear Engineering and Design, 2005, 235(8): 913-924. |
6 | Cheng L X, Ribatski G, Thome J R. Analysis of supercritical CO2 cooling in macro- and micro-channels[J]. International Journal of Refrigeration, 2008, 31(8): 1301-1316. |
7 | Huang D, Wu Z, Sunden B, et al. A brief review on convection heat transfer of fluids at supercritical pressures in tubes and the recent progress[J]. Applied Energy, 2016, 162: 494-505. |
8 | Ehsan M M, Guan Z Q, Klimenko A Y. A comprehensive review on heat transfer and pressure drop characteristics and correlations with supercritical CO2 under heating and cooling applications[J]. Renewable and Sustainable Energy Reviews, 2018, 92: 658-675. |
9 | Pioro I L. Current status of research on heat transfer in forced convection of fluids at supercritical pressures[J]. Nuclear Engineering and Design, 2019, 354: 110207. |
10 | Xie G N, Xu X X, Lei X L, et al. Heat transfer behaviors of some supercritical fluids: a review[J]. Chinese Journal of Aeronautics, 2022, 35(1): 290-306. |
11 | Du X, Zhu X J, Yu X, et al. Heat transfer deterioration and visualized flow state of supercritical CO2 in a vertical non-circular channel[J]. Nuclear Engineering and Design, 2022, 386: 111574. |
12 | Lyu H C, Wang H, Huang Y P, et al. Visualization experiments and piston effect of heat transfer for supercritical carbon dioxide[J]. The Journal of Supercritical Fluids, 2023, 198: 105905. |
13 | Torres J F, Komiya A, Shoji E, et al. Development of phase-shifting interferometry for measurement of isothermal diffusion coefficients in binary solutions[J]. Optics and Lasers in Engineering, 2012, 50(9): 1287-1296. |
14 | Srinivas Rao S, Srivastava A. Interferometry-based whole field investigation of heat transfer characteristics of dilute nanofluids[J]. International Journal of Heat and Mass Transfer, 2014, 79: 166-175. |
15 | Deng B L, Kanda Y, Chen L, et al. Visualization study of supercritical fluid convection and heat transfer in weightlessness by interferometry: a brief review[J]. Microgravity Science and Technology, 2017, 29(4): 275-295. |
16 | Hu Z C, Wang G Y. Heat transfer analysis of a pulse-heated microwire in CO2 at supercritical pressures[J]. AIP Advances, 2022, 12(10): 105125. |
17 | Kanda Y, Shoji E, Chen L, et al. Measurement of transient heat transfer in vicinity of gas-liquid interface using high-speed phase-shifting interferometer[J]. International Communications in Heat and Mass Transfer, 2017, 89: 57-63. |
18 | Kanda Y, Ito H, Chen L, et al. Optical visualization of heat transfer in supercritical carbon dioxide under near-critical, liquid-like, and gas-like conditions[J]. Physics of Fluids, 2023, 35(6): 067108. |
19 | Liu J, Komiya A. Quantitative visualization of the thermal boundary layer of forced convection on a heated or cooled flat plate with a 30° leading edge using a mach-zehnder interferometer[J]. Journal of Flow Control, Measurement & Visualization, 2022, 10(4): 99-116. |
20 | Shoji E, Nakaoku R, Komiya A, et al. Quantitative visualization of boundary layers by developing quasi-common-path phase-shifting interferometer[J]. Experimental Thermal and Fluid Science, 2015, 60: 231-240. |
21 | Wu Q X, Chen L, Komiya A. Dynamic imaging and analysis of transient mass transfer process using pixelated-array masked phase-shifting interferometry[J]. International Journal of Heat and Mass Transfer, 2021, 174: 121339. |
22 | Yang D, Chen L, Kanda Y, et al. Quantitative visualization of injection jet flow behaviors of transcritical and supercritical processes by pixelated phase-shifting interferometer[J]. Experimental Thermal and Fluid Science, 2022, 139: 110729. |
23 | Yang D, Chen L, Zang J G, et al. Experimental characterization and analysis of supercritical jet dynamics by phase-shifting interferometer system[J]. The Journal of Supercritical Fluids, 2022, 189: 105724. |
24 | Yang D, Chen L. Visualization of dynamic phase mixing and equilibrium process in transcritical and supercritical conditions[J]. Flow Measurement and Instrumentation, 2023, 92: 102399. |
25 | Zhang Y Z, Chen L, Wu Q X, et al. Preliminary measurements of transient boundary heat transfer process under supercritical pressures using pixelated phase-shifting interferometry[J]. International Communications in Heat and Mass Transfer, 2022, 138: 106396. |
26 | Okamoto K, Ota J, Sakurai K, et al. Transient velocity distributions for the supercritical carbon dioxide forced convection heat transfer[J]. Journal of Nuclear Science and Technology, 2003, 40(10): 763-767. |
27 | Chen L, Zhang Q G, Wu Q X, et al. Measurement of transient transport process of different molecules across mixed fiber (CA-CN) membrane by pixelated-array masked phase-shifting interferometer[J]. Experimental Thermal and Fluid Science, 2022, 130: 110490. |
28 | Liu S H, Huang Y P, Liu G X, et al. Improvement of buoyancy and acceleration parameters for forced and mixed convective heat transfer to supercritical fluids flowing in vertical tubes[J]. International Journal of Heat and Mass Transfer, 2017, 106: 1144-1156. |
29 | 杨董, 陈林. 跨/超临界多相射流过程瞬态密度场可视化实验[J]. 化工进展, 2021, 40(12): 6432-6440. |
Yang D, Chen L. Visualization of transient density field in multiphase jet flow under transcritical/supercritical conditions[J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6432-6440. | |
30 | He J, Tian R, Jiang P X, et al. Turbulence in a heated pipe at supercritical pressure[J]. Journal of Fluid Mechanics, 2021, 920: A45. |
31 | Cao Y L, Xu R N, He S, et al. Accelerating turbulence in heated micron tubes at supercritical pressure[J]. Journal of Fluid Mechanics, 2023, 972: A13. |
32 | Cao Y L, Xu R N, Yan J J, et al. Direct numerical simulation of convective heat transfer of supercritical pressure in a vertical tube with buoyancy and thermal acceleration effects[J]. Journal of Fluid Mechanics, 2021, 927: A29. |
[1] | 罗正航, 李敬宇, 陈伟雄, 种道彤, 严俊杰. 摇摆运动下低流率蒸汽冷凝换热特性和气泡受力数值模拟[J]. 化工学报, 2024, 75(8): 2800-2811. |
[2] | 毛宇飞, 曹飞, 上官燕琴. 超临界压力流体管内湍流对流传热的计算方法[J]. 化工学报, 2024, 75(8): 2821-2830. |
[3] | 吴邦汉, 林定标, 陆海峰, 郭晓镭, 刘海峰. 竖直管气动物流传输系统管道压降和传送瓶输送特性[J]. 化工学报, 2024, 75(7): 2465-2473. |
[4] | 李沛奇, 陈雪娇, 武博翔, 蒋榕培, 杨超, 刘朝晖. 高参数石油基和煤基火箭煤油射线法密度测量实验研究[J]. 化工学报, 2024, 75(7): 2422-2432. |
[5] | 马君霞, 李林涛, 熊伟丽. 基于Tri-training GPR的半监督软测量建模方法[J]. 化工学报, 2024, 75(7): 2613-2623. |
[6] | 李子扬, 郑楠, 方嘉宾, 魏进家. 再压缩S-CO2布雷顿循环性能分析及多目标优化[J]. 化工学报, 2024, 75(6): 2143-2156. |
[7] | 黎宏陶, 王振雷, 王昕. 基于即时学习的改进条件高斯回归软测量[J]. 化工学报, 2024, 75(6): 2299-2312. |
[8] | 张晗, 张淑宁, 刘珂, 邓冠龙. 基于慢特征分析与最小二乘支持向量回归集成的草酸钴合成过程粒度预报[J]. 化工学报, 2024, 75(6): 2313-2321. |
[9] | 周辛梓, 李增辉, 孟现阳, 吴江涛. 低温下高纯空气黏度实验研究[J]. 化工学报, 2024, 75(3): 782-788. |
[10] | 陈彦松, 阮达, 刘渊博, 郑通, 张帅帅, 马学虎. 微通道换热器拓扑结构优化与性能研究[J]. 化工学报, 2024, 75(3): 823-835. |
[11] | 徐百平, 梁瑞凤, 喻慧文, 吴桂群, 肖书平. 双螺杆挤出机强化三角形转子作用下的腔内分布混合模拟[J]. 化工学报, 2024, 75(3): 858-866. |
[12] | 朱芝, 许恒杰, 陈维, 毛文元, 邓强国, 孙雪剑. 超临界二氧化碳螺旋槽干气密封热流耦合润滑临界阻塞特性研究[J]. 化工学报, 2024, 75(2): 604-615. |
[13] | 张泽欣, 郑伟中, 徐益升, 胡冬冬, 卓欣宇, 宗原, 孙伟振, 赵玲. 超临界二氧化碳介质中晶圆清洗与选择性刻蚀研究进展[J]. 化工学报, 2024, 75(1): 110-119. |
[14] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[15] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 211
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 118
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||