1 |
Chen L. Handbook of Research on Advancements in Supercritical Fluids Applications for Sustainable Energy Systems[M]. Hershey: IGI Global, 2021.
|
2 |
Chen L, Zhang X R. Experiments on natural convective solar thermal achieved by supercritical CO2/dimethyl ether mixture fluid[J]. Journal of Solar Energy Engineering, 2014, 136(3): 031011.
|
3 |
Deev V I, Kharitonov V S, Baisov A M, et al. Heat transfer characteristics of water under supercritical conditions[J]. International Journal of Thermal Sciences, 2022, 171: 107238.
|
4 |
Chen L. Microchannel Flow Dynamic and Heat Transfer of Near-Critical Fluid[M]. Singapore: Springer Singapore, 2017.
|
5 |
Duffey R B, Pioro I L. Experimental heat transfer of supercritical carbon dioxide flowing inside channels (survey)[J]. Nuclear Engineering and Design, 2005, 235(8): 913-924.
|
6 |
Cheng L X, Ribatski G, Thome J R. Analysis of supercritical CO2 cooling in macro- and micro-channels[J]. International Journal of Refrigeration, 2008, 31(8): 1301-1316.
|
7 |
Huang D, Wu Z, Sunden B, et al. A brief review on convection heat transfer of fluids at supercritical pressures in tubes and the recent progress[J]. Applied Energy, 2016, 162: 494-505.
|
8 |
Ehsan M M, Guan Z Q, Klimenko A Y. A comprehensive review on heat transfer and pressure drop characteristics and correlations with supercritical CO2 under heating and cooling applications[J]. Renewable and Sustainable Energy Reviews, 2018, 92: 658-675.
|
9 |
Pioro I L. Current status of research on heat transfer in forced convection of fluids at supercritical pressures[J]. Nuclear Engineering and Design, 2019, 354: 110207.
|
10 |
Xie G N, Xu X X, Lei X L, et al. Heat transfer behaviors of some supercritical fluids: a review[J]. Chinese Journal of Aeronautics, 2022, 35(1): 290-306.
|
11 |
Du X, Zhu X J, Yu X, et al. Heat transfer deterioration and visualized flow state of supercritical CO2 in a vertical non-circular channel[J]. Nuclear Engineering and Design, 2022, 386: 111574.
|
12 |
Lyu H C, Wang H, Huang Y P, et al. Visualization experiments and piston effect of heat transfer for supercritical carbon dioxide[J]. The Journal of Supercritical Fluids, 2023, 198: 105905.
|
13 |
Torres J F, Komiya A, Shoji E, et al. Development of phase-shifting interferometry for measurement of isothermal diffusion coefficients in binary solutions[J]. Optics and Lasers in Engineering, 2012, 50(9): 1287-1296.
|
14 |
Srinivas Rao S, Srivastava A. Interferometry-based whole field investigation of heat transfer characteristics of dilute nanofluids[J]. International Journal of Heat and Mass Transfer, 2014, 79: 166-175.
|
15 |
Deng B L, Kanda Y, Chen L, et al. Visualization study of supercritical fluid convection and heat transfer in weightlessness by interferometry: a brief review[J]. Microgravity Science and Technology, 2017, 29(4): 275-295.
|
16 |
Hu Z C, Wang G Y. Heat transfer analysis of a pulse-heated microwire in CO2 at supercritical pressures[J]. AIP Advances, 2022, 12(10): 105125.
|
17 |
Kanda Y, Shoji E, Chen L, et al. Measurement of transient heat transfer in vicinity of gas-liquid interface using high-speed phase-shifting interferometer[J]. International Communications in Heat and Mass Transfer, 2017, 89: 57-63.
|
18 |
Kanda Y, Ito H, Chen L, et al. Optical visualization of heat transfer in supercritical carbon dioxide under near-critical, liquid-like, and gas-like conditions[J]. Physics of Fluids, 2023, 35(6): 067108.
|
19 |
Liu J, Komiya A. Quantitative visualization of the thermal boundary layer of forced convection on a heated or cooled flat plate with a 30° leading edge using a mach-zehnder interferometer[J]. Journal of Flow Control, Measurement & Visualization, 2022, 10(4): 99-116.
|
20 |
Shoji E, Nakaoku R, Komiya A, et al. Quantitative visualization of boundary layers by developing quasi-common-path phase-shifting interferometer[J]. Experimental Thermal and Fluid Science, 2015, 60: 231-240.
|
21 |
Wu Q X, Chen L, Komiya A. Dynamic imaging and analysis of transient mass transfer process using pixelated-array masked phase-shifting interferometry[J]. International Journal of Heat and Mass Transfer, 2021, 174: 121339.
|
22 |
Yang D, Chen L, Kanda Y, et al. Quantitative visualization of injection jet flow behaviors of transcritical and supercritical processes by pixelated phase-shifting interferometer[J]. Experimental Thermal and Fluid Science, 2022, 139: 110729.
|
23 |
Yang D, Chen L, Zang J G, et al. Experimental characterization and analysis of supercritical jet dynamics by phase-shifting interferometer system[J]. The Journal of Supercritical Fluids, 2022, 189: 105724.
|
24 |
Yang D, Chen L. Visualization of dynamic phase mixing and equilibrium process in transcritical and supercritical conditions[J]. Flow Measurement and Instrumentation, 2023, 92: 102399.
|
25 |
Zhang Y Z, Chen L, Wu Q X, et al. Preliminary measurements of transient boundary heat transfer process under supercritical pressures using pixelated phase-shifting interferometry[J]. International Communications in Heat and Mass Transfer, 2022, 138: 106396.
|
26 |
Okamoto K, Ota J, Sakurai K, et al. Transient velocity distributions for the supercritical carbon dioxide forced convection heat transfer[J]. Journal of Nuclear Science and Technology, 2003, 40(10): 763-767.
|
27 |
Chen L, Zhang Q G, Wu Q X, et al. Measurement of transient transport process of different molecules across mixed fiber (CA-CN) membrane by pixelated-array masked phase-shifting interferometer[J]. Experimental Thermal and Fluid Science, 2022, 130: 110490.
|
28 |
Liu S H, Huang Y P, Liu G X, et al. Improvement of buoyancy and acceleration parameters for forced and mixed convective heat transfer to supercritical fluids flowing in vertical tubes[J]. International Journal of Heat and Mass Transfer, 2017, 106: 1144-1156.
|
29 |
杨董, 陈林. 跨/超临界多相射流过程瞬态密度场可视化实验[J]. 化工进展, 2021, 40(12): 6432-6440.
|
|
Yang D, Chen L. Visualization of transient density field in multiphase jet flow under transcritical/supercritical conditions[J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6432-6440.
|
30 |
He J, Tian R, Jiang P X, et al. Turbulence in a heated pipe at supercritical pressure[J]. Journal of Fluid Mechanics, 2021, 920: A45.
|
31 |
Cao Y L, Xu R N, He S, et al. Accelerating turbulence in heated micron tubes at supercritical pressure[J]. Journal of Fluid Mechanics, 2023, 972: A13.
|
32 |
Cao Y L, Xu R N, Yan J J, et al. Direct numerical simulation of convective heat transfer of supercritical pressure in a vertical tube with buoyancy and thermal acceleration effects[J]. Journal of Fluid Mechanics, 2021, 927: A29.
|