化工学报 ›› 2024, Vol. 75 ›› Issue (7): 2522-2532.DOI: 10.11949/0438-1157.20240209
罗莉(), 陈文尧(
), 张晶, 钱刚, 周兴贵, 段学志(
)
收稿日期:
2024-02-27
修回日期:
2024-05-09
出版日期:
2024-07-25
发布日期:
2024-08-09
通讯作者:
陈文尧,段学志
作者简介:
罗莉(1999—),女,硕士研究生,Y30210161@mail.ecust.edu.cn
基金资助:
Li LUO(), Wenyao CHEN(
), Jing ZHANG, Gang QIAN, Xinggui ZHOU, Xuezhi DUAN(
)
Received:
2024-02-27
Revised:
2024-05-09
Online:
2024-07-25
Published:
2024-08-09
Contact:
Wenyao CHEN, Xuezhi DUAN
摘要:
二甲醚(DME)作为一种关键的化工原料,被广泛用于合成众多重要的化学品及能源产品。在工业生产中用于从甲醇制备DME的催化剂γ-Al2O3因其高效的催化性能而得到普遍应用。然而,γ-Al2O3的合成方法和制备条件对其催化性能有着显著的影响。目前,对于工业上常用的γ-Al2O3合成条件如何影响其催化性能的系统研究仍然不足。特别是,作为影响催化性能的关键因素之一,酸性位点的性质尚未形成共识。通过调控双铝法成胶过程中母液的pH,成功合成了一系列具有不同孔道结构和酸性质的γ-Al2O3。实验结果表明,随着母液pH的增大,γ-Al2O3的比表面积、孔容和孔径均呈现减小趋势。同时,γ-Al2O3的弱酸量逐渐减小,而中强酸量呈现先增后减的趋势。进一步结合催化性能评估结果,发现中强酸数量与甲醇脱水性能密切相关。具有最高中强酸数量的γ-Al2O3表现出最高的DME产率,预示中强酸位点是γ-Al2O3催化甲醇脱水制备DME的主要活性中心。针对具有最优性能的γ-Al2O3开展动力学实验分析,得到甲醇脱水的反应级数为0.78,反应活化能为83.27 kJ/mol。研究可为甲醇脱水制备DME催化剂的设计提供指导,为进一步优化工业生产条件和提高催化效率夯实基础。
中图分类号:
罗莉, 陈文尧, 张晶, 钱刚, 周兴贵, 段学志. 氧化铝结构与表面性质调控及其催化甲醇脱水制二甲醚性能研究[J]. 化工学报, 2024, 75(7): 2522-2532.
Li LUO, Wenyao CHEN, Jing ZHANG, Gang QIAN, Xinggui ZHOU, Xuezhi DUAN. Alumina structure and surface property regulation for catalyzing methanol dehydration to dimethyl ether[J]. CIESC Journal, 2024, 75(7): 2522-2532.
图5 不同母液pH下合成的γ-Al2O3的N2吸-脱附曲线和孔径分布曲线
Fig.5 N2 adsorption-desorption isotherms and pore size distribution curves of γ-Al2O3 synthesized at different mother liquor pH
催化剂 | 比表面积/(m2/g) | 孔容/(cm3·g) | 平均孔径/nm |
---|---|---|---|
γ-Al2O3-8.0 | 422.0 | 1.93 | 13.5 |
γ-Al2O3-8.5 | 361.7 | 1.61 | 11.8 |
γ-Al2O3-9.0 | 152.8 | 0.87 | 7.2 |
γ-Al2O3-9.5 | 245.5 | 0.53 | 6.7 |
γ-Al2O3-10.5 | 132.5 | 0.57 | 7.7 |
表1 不同母液pH下合成的γ-Al2O3孔结构参数
Table 1 The pore structure parameters of γ-Al2O3 synthesized at different mother liquor pH
催化剂 | 比表面积/(m2/g) | 孔容/(cm3·g) | 平均孔径/nm |
---|---|---|---|
γ-Al2O3-8.0 | 422.0 | 1.93 | 13.5 |
γ-Al2O3-8.5 | 361.7 | 1.61 | 11.8 |
γ-Al2O3-9.0 | 152.8 | 0.87 | 7.2 |
γ-Al2O3-9.5 | 245.5 | 0.53 | 6.7 |
γ-Al2O3-10.5 | 132.5 | 0.57 | 7.7 |
催化剂 | 总酸量/(mmol/g) | 弱酸量/(mmol/g) | 中强酸量/(mmol/g) |
---|---|---|---|
γ-Al2O3-8.0 | 0.643 | 0.539 | 0.104 |
γ-Al2O3-8.5 | 0.509 | 0.374 | 0.135 |
γ-Al2O3-9.0 | 0.368 | 0.203 | 0.165 |
γ-Al2O3-9.5 | 0.236 | 0.111 | 0.125 |
γ-Al2O3-10.5 | 0.203 | 0.095 | 0.108 |
表2 不同母液pH下制得的γ-Al2O3的酸量
Table 2 The amount of acid sites of γ-Al2O3 synthesized at different mother liquor pH
催化剂 | 总酸量/(mmol/g) | 弱酸量/(mmol/g) | 中强酸量/(mmol/g) |
---|---|---|---|
γ-Al2O3-8.0 | 0.643 | 0.539 | 0.104 |
γ-Al2O3-8.5 | 0.509 | 0.374 | 0.135 |
γ-Al2O3-9.0 | 0.368 | 0.203 | 0.165 |
γ-Al2O3-9.5 | 0.236 | 0.111 | 0.125 |
γ-Al2O3-10.5 | 0.203 | 0.095 | 0.108 |
1 | Prins R. On the structure of γ-Al2O3 [J]. Journal of Catalysis, 2020, 392: 336-346. |
2 | Garbarino G, Travi I, Pani M, et al. Pure vs ultra-pure γ-alumina: a spectroscopic study and catalysis of ethanol conversion[J]. Catalysis Communications, 2015, 70: 77-81. |
3 | Pérez-Martínez D J, Eloy P, Gaigneaux E M, et al. Study of the selectivity in FCC naphtha hydrotreating by modifying the acid-base balance of CoMo/γ-Al2O3 catalysts[J]. Applied Catalysis A: General, 2010, 390(1/2): 59-70. |
4 | Zagoruiko A N, Shinkarev V V, Vanag S V, et al. Catalytic processes and catalysts for production of elemental sulfur from sulfur-containing gases[J]. Catalysis in Industry, 2010, 2(4): 343-352. |
5 | Chaichana E, Boonsinvarothai N, Chitpong N, et al. Catalytic dehydration of ethanol to ethylene and diethyl ether over alumina catalysts containing different phases with boron modification[J]. Journal of Porous Materials, 2019, 26(2): 599-610. |
6 | Phung T K, Herrera C, Larrubia M Á, et al. Surface and catalytic properties of some γ-Al2O3 powders[J]. Applied Catalysis A: General, 2014, 483: 41-51. |
7 | Sui B K, Wang G, Yuan S H, et al. Macroporous Al2O3 with three-dimensionally interconnected structure: catalytic performance of hydrodemetallization for residue oil[J]. Journal of Fuel Chemistry and Technology, 2021, 49(8): 1201-1207. |
8 | Yang Z R, Shi Y, Lin Y, et al. Hierarchical pore construction of alumina microrod supports for Pt catalysts toward the enhanced performance of n-heptane reforming[J]. Chemical Engineering Science, 2022, 252: 117286. |
9 | Bateni H, Able C. Development of heterogeneous catalysts for dehydration of methanol to dimethyl ether: a review[J]. Catalysis in Industry, 2019, 11(1): 7-33. |
10 | 余英哲. 乙醇脱水制乙烯γ-Al2O3催化剂的分子模拟和实验研究[D]. 天津: 天津大学, 2012. |
Yu Y Z. Molecular simulation and experimental study on ethanol dehydration to ethylene on γ-Al2O3 catalyst[D]. Tianjin: Tianjin University, 2012. | |
11 | 高帅涛. 溶胶-凝胶法制备介孔结构氧化铝载体球——结构与性能调控[D]. 长沙: 中南大学, 2022. |
Gao S T. Preparation of mesoporous spherical alumina support by sol-gel method—structure and performance[D]. Changsha: Central South University, 2022. | |
12 | Shi Q Q, Wei X J, Raza A, et al. Recent advances in aerobic photo-oxidation of methanol to valuable chemicals[J]. ChemCatChem, 2021, 13(15): 3381-3395. |
13 | Olah G A. Beyond oil and gas: the methanol economy[J]. Angewandte Chemie International Edition, 2005, 44(18): 2636-2639. |
14 | Merkouri L P, Ahmet H, Ramirez Reina T, et al. The direct synthesis of dimethyl ether (DME) from landfill gas: a techno-economic investigation[J]. Fuel, 2022, 319: 123741. |
15 | Zeman P, Hönig V, Procházka P, et al. Dimethyl ether as a renewable fuel for diesel engines[J]. Agronomy Research, 2017, 15(5): 2226-2235. |
16 | Boon J, van Kampen J, Hoogendoorn R, et al. Reversible deactivation of γ-alumina by steam in the gas-phase dehydration of methanol to dimethyl ether[J]. Catalysis Communications, 2019, 119: 22-27. |
17 | Kim S M, Lee Y J, Bae J W, et al. Synthesis and characterization of a highly active alumina catalyst for methanol dehydration to dimethyl ether[J]. Applied Catalysis A: General, 2008, 348(1): 113-120. |
18 | Keshavarz A R, Rezaei M, Yaripour F. Preparation of nanocrystalline γ-Al2O3 catalyst using different procedures for methanol dehydration to dimethyl ether[J]. Journal of Natural Gas Chemistry, 2011, 20(3): 334-338. |
19 | Armenta M A, Maytorena V M, Flores-Sánchez L A, et al. Dimethyl ether production via methanol dehydration using Fe3O4 and CuO over γ-χ-Al2O3 nanocatalysts[J]. Fuel, 2020, 280: 118545. |
20 | Mollavali M, Yaripour F, Atashi H, et al. Intrinsic kinetics study of dimethyl ether synthesis from methanol on γ-Al2O3 catalysts[J]. Industrial & Engineering Chemistry Research, 2008, 47(18): 7130. |
21 | Mollavali M, Yaripour F, Mohammadi-Jam S, et al. Relationship between surface acidity and activity of solid-acid catalysts in vapour phase dehydration of methanol[J]. Fuel Processing Technology, 2009, 90(9): 1093-1098. |
22 | Ardy A, Hantoko D, Rizkiana J, et al. Effect of phosphorus impregnation on γ-Al2O3 for methanol dehydration to dimethyl ether[J]. Arabian Journal for Science and Engineering, 2023, 48(12): 15883-15893. |
23 | Potdar H S, Jun K W, Bae J W, et al. Synthesis of nano-sized porous γ-alumina powder via a precipitation/digestion route[J]. Applied Catalysis A: General, 2007, 321(2): 109-116. |
24 | Akarmazyan S S, Panagiotopoulou P, Kambolis A, et al. Methanol dehydration to dimethylether over Al2O3 catalysts[J]. Applied Catalysis B: Environmental, 2014, 145: 136-148. |
25 | Liu D H, Yao C F, Zhang J Q, et al. Catalytic dehydration of methanol to dimethyl ether over modified γ-Al2O3 catalyst[J]. Fuel, 2011, 90(5): 1738-1742. |
26 | Hashemi Dehkordi S A, Golbodaqi M, Mortazavi-Manesh A, et al. Dimethyl ether from methanol on mesoporous γ-alumina catalyst prepared from surfactant free highly porous pseudo-boehmite[J]. Molecular Catalysis, 2023, 538: 113004. |
27 | Poto S, Vico van Berkel D, Gallucci F, et al. Kinetic modelling of the methanol synthesis from CO2 and H2 over a CuO/CeO2/ZrO2 catalyst: the role of CO2 and CO hydrogenation[J]. Chemical Engineering Journal, 2022, 435: 134946. |
28 | 万莉莎. 膜分散微反应器中纤维状介孔γ-氧化铝的制备与公斤级放大试验[D]. 西安: 西北大学, 2021. |
Wan L S. Preparation and scale-up test on fibrous mesoporous γ-Al2O3 in membrane dispersion microreactor[D]. Xi’an: Northwest University, 2021. | |
29 | 甘志宏. 高稳定性介孔氧化铝的合成、形貌控制与表征[D]. 大连: 大连理工大学, 2008. |
Gan Z H. Synthesis, morphology control, and characterization of highly stabilized mesoporous alumina[D]. Dalian: Dalian University of Technology, 2008. | |
30 | Zhu H Y, Riches J D, Barry J C. γ-Alumina nanofibers prepared from aluminum hydrate with poly (ethylene oxide) surfactant[J]. Chemistry of Materials, 2002, 14(5): 2086-2093. |
31 | Breckner C J, Pham H N, Dempsey M G, et al. The role of Lewis acid sites in γ-Al2O3 oligomerization[J]. ChemPhysChem, 2023, 24(14): e202300244. |
32 | Parry E P. An infrared study of pyridine adsorbed on acidic solids. Characterization of surface acidity[J]. Journal of Catalysis, 1963, 2(5): 371-379. |
33 | Shamanaev I, Deliy I, Gerasimov E, et al. Synergetic effect of Ni2P/SiO2 and γ-Al2O3 physical mixture in hydrodeoxygenation of methyl palmitate[J]. Catalysts, 2017, 7(11): 329. |
34 | Jokar F, Alavi S M, Rezaei M. Investigating the hydroisomerization of n-pentane using Pt supported on ZSM-5, desilicated ZSM-5, and modified ZSM-5/MCM-41[J]. Fuel, 2022, 324: 124511. |
35 | Lok B M, Marcus B K, Angell C L. Characterization of zeolite acidity (Ⅱ): Measurement of zeolite acidity by ammonia temperature programmed desorption and FTIR. spectroscopy techniques[J]. Zeolites, 1986, 6(3): 185-194. |
36 | Han L, Zhou Z Q, Bollas G M. Heterogeneous modeling of chemical-looping combustion (Ⅰ): Reactor model[J]. Chemical Engineering Science, 2013, 104: 233-249. |
37 | Viscardi R, Barbarossa V, Gattia D M, et al. Effect of surface acidity on the catalytic activity and deactivation of supported sulfonic acids during dehydration of methanol to DME[J]. New Journal of Chemistry, 2020, 44(39): 16810-16820. |
38 | Yaripour F, Shariatinia Z, Sahebdelfar S, et al. The effects of synthesis operation conditions on the properties of modified γ-alumina nanocatalysts in methanol dehydration to dimethyl ether using factorial experimental design[J]. Fuel, 2015, 139: 40-50. |
39 | Hosseini S Y, Khosravi Nikou M R. Investigation of different precipitating agents effects on performance of γ-Al2O3 nanocatalysts for methanol dehydration to dimethyl ether[J]. Journal of Industrial and Engineering Chemistry, 2014, 20(6): 4421-4428. |
40 | Sahebdelfar S, Bijani P M, Yaripour F. Deactivation kinetics of γ-Al2O3 catalyst in methanol dehydration to dimethyl ether[J]. Fuel, 2022, 310: 122443. |
41 | Armenta M A, Valdez R, Quintana J M, et al. Highly selective CuO/γ-Al2O3 catalyst promoted with hematite for efficient methanol dehydration to dimethyl ether[J]. International Journal of Hydrogen Energy, 2018, 43(13): 6551-6560. |
42 | Hosseini Z, Taghizadeh M, Yaripour F. Synthesis of nanocrystalline γ-Al2O3 by sol-gel and precipitation methods for methanol dehydration to dimethyl ether[J]. Journal of Natural Gas Chemistry, 2011, 20(2): 128-134. |
43 | Hosseini S Y, Khosravi Nikou M R. Synthesis and characterization of different γ-Al2O3 nanocatalysts for methanol dehydration to dimethyl ether[J]. International Journal of Chemical Reactor Engineering, 2012, 10(1): A65. |
44 | Kim S D, Baek S C, Lee Y J, et al. Effect of γ-alumina content on catalytic performance of modified ZSM-5 for dehydration of crude methanol to dimethyl ether[J]. Applied Catalysis A: General, 2006, 309(1): 139-143. |
45 | Rahmanpour O, Shariati A, Nikou M R K. New method for synthesis nano size γ-Al2O3 catalyst for dehydration of methanol to dimethyl ether[J]. International Journal of Chemical Engineering and Applications, 2012: 125-128. |
46 | Aboul-Fotouh S M K. Effect of ultrasonic irradiation and/or halogenation on the catalytic performance of γ-Al2O3 for methanol dehydration to dimethyl ether[J]. Journal of Fuel Chemistry and Technology, 2013, 41(9): 1077-1084. |
47 | Dey S, Dhal G C, Mohan D, et al. Kinetics of catalytic oxidation of carbon monoxide over CuMnAgO x catalyst[J]. Materials Discovery, 2017, 8: 18-25. |
48 | Zhokh A, Trypolskyi A, Gritsenko V, et al. Intrinsic kinetics of the methanol dehydration to dimethyl ether over laboratory and commercial γ-alumina: a comparative study[J]. Asia-Pacific Journal of Chemical Engineering, 2022, 17(1): e2722. |
49 | Kobl K, Thomas S, Zimmermann Y, et al. Power-law kinetics of methanol synthesis from carbon dioxide and hydrogen on copper-zinc oxide catalysts with alumina or zirconia supports[J]. Catalysis Today, 2016, 270: 31-42. |
50 | Zhokh O O, Trypolskyi A I. Effect of water on the rate of methanol conversion to dimethyl ether over H-ZSM-5 zeolite[J]. Theoretical and Experimental Chemistry, 2021, 57(3): 220-225. |
51 | Li H X, Yang L Q Q, Chi Z Y, et al. CO2 hydrogenation to methanol over Cu/ZnO/Al2O3 catalyst: kinetic modeling based on either single- or dual-active site mechanism[J]. Catalysis Letters, 2022, 152(10): 3110-3124. |
52 | Sontakke S, Modak J, Madras G. Photocatalytic inactivation of Escherischia coli and Pichia pastoris with combustion synthesized titanium dioxide[J]. Chemical Engineering Journal, 2010, 165(1): 225-233. |
53 | Wang Y, Wang G, Deng W, et al. Study on the structure-activity relationship of Fe-Mn oxide catalysts for chlorobenzene catalytic combustion[J]. Chemical Engineering Journal, 2020, 395: 125172. |
54 | Li G B, Shen K, Wang L, et al. Synergistic degradation mechanism of chlorobenzene and NO x over the multi-active center catalyst: the role of NO2, Brønsted acidic site, oxygen vacancy[J]. Applied Catalysis B: Environmental, 2021, 286: 119865. |
55 | Zhang L P, Li T, Dai X C, et al. Water activation triggered by Cu-Co double-atom catalyst for silane oxidation[J]. Angewandte Chemie International Edition, 2023, 62(47): 2313343. |
56 | Li W B, Gan J, Liu Y X, et al. Platinum and frustrated Lewis pairs on ceria as dual-active sites for efficient reverse water-gas shift reaction at low temperatures[J]. Angewandte Chemie International Edition, 2023, 62(37): e202305661. |
[1] | 吴邦汉, 林定标, 陆海峰, 郭晓镭, 刘海峰. 竖直管气动物流传输系统管道压降和传送瓶输送特性[J]. 化工学报, 2024, 75(7): 2465-2473. |
[2] | 王寅, 初鹏飞, 刘虎, 吕静, 黄守莹, 王胜平, 马新宾. 不同pH铝溶胶对二甲醚羰基化成型丝光沸石催化剂性能的影响[J]. 化工学报, 2024, 75(7): 2533-2543. |
[3] | 杨露, 刘聪聪, 孟彤彤, 张博远, 杨腾飞, 邓文安, 王晓斌. 分散型催化剂在煤/重油共炼体系中的加氢抑焦作用[J]. 化工学报, 2024, 75(7): 2556-2564. |
[4] | 马君霞, 李林涛, 熊伟丽. 基于Tri-training GPR的半监督软测量建模方法[J]. 化工学报, 2024, 75(7): 2613-2623. |
[5] | 刘旭升, 李泽洋, 杨宇森, 卫敏. 电催化二氧化碳还原制备气态产物的研究进展[J]. 化工学报, 2024, 75(7): 2385-2408. |
[6] | 王天闻, 闫肃, 赵梦园, 杨天让, 刘建国. 固体氧化物电池空气电极铬中毒机理及抗铬性能研究进展[J]. 化工学报, 2024, 75(6): 2091-2108. |
[7] | 杨艳, 郭亚丽, 于硕文, 潘泊年, 沈胜强. 液氨喷射泵热力性能的计算分析[J]. 化工学报, 2024, 75(6): 2134-2142. |
[8] | 陈彦伶, 袁炳志, 王丽伟, 张宸, 朱涵玉. 非平衡条件下金属氯化物-氨工质对的吸附动力学研究[J]. 化工学报, 2024, 75(6): 2252-2261. |
[9] | 霍宗伟, 牛亚宾, 潘艳秋. 油水膜分离中高黏度油滴行为研究和影响因素分析[J]. 化工学报, 2024, 75(6): 2262-2273. |
[10] | 赵亭亭, 鄢立祥, 唐福利, 肖敏之, 谭烨, 宋刘斌, 肖忠良, 李灵均. 光辅助锂-二氧化碳电池催化剂的设计策略与反应机理研究进展[J]. 化工学报, 2024, 75(5): 1750-1764. |
[11] | 莫锦洪, 韩雪, 朱毅翔, 李菁, 王旭裕, 纪红兵. Pt-Ga/CeO2-ZrO2-Al2O3脱氢裂解双功能催化剂用于正丁烷催化制烯烃研究[J]. 化工学报, 2024, 75(5): 1855-1869. |
[12] | 王文雅, 张玮, 楼小玲, 钟若菲, 陈冰冰, 贠军贤. 纳米纤维素嵌合型晶胶微球的多微管成形与模拟[J]. 化工学报, 2024, 75(5): 2060-2071. |
[13] | 丁禹, 杨昌泽, 李军, 孙会东, 商辉. 原子尺度钼系加氢脱硫催化剂的研究进展与展望[J]. 化工学报, 2024, 75(5): 1735-1749. |
[14] | 程骁恺, 历伟, 王靖岱, 阳永荣. 镍催化可控/活性自由基聚合反应研究进展[J]. 化工学报, 2024, 75(4): 1105-1117. |
[15] | 韩宇, 周乐, 张鑫, 罗勇, 孙宝昌, 邹海魁, 陈建峰. 高黏附性Pd/SiO2/NF整体式催化剂的制备及加氢性能研究[J]. 化工学报, 2024, 75(4): 1533-1542. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||