1 |
James O O, Mandal S, Alele N, et al. Lower alkanes dehydrogenation: strategies and reaction routes to corresponding alkenes[J]. Fuel Processing Technology, 2016, 149: 239-255.
|
2 |
Atanga M A, Rezaei F, Jawad A, et al. Oxidative dehydrogenation of propane to propylene with carbon dioxide[J]. Applied Catalysis B: Environmental, 2018, 220: 429-445.
|
3 |
Sattler J J H B, Ruiz-Martinez J, Santillan-Jimenez E, et al. Catalytic dehydrogenation of light alkanes on metals and metal oxides[J]. Chemical Reviews, 2014, 114(20): 10613-10653.
|
4 |
Zhao Z J, Chiu C C, Gong J L. Molecular understandings on the activation of light hydrocarbons over heterogeneous catalysts[J]. Chemical Science, 2015, 6(8): 4403-4425.
|
5 |
Chen S, Chang X, Sun G D, et al. Propane dehydrogenation: catalyst development, new chemistry, and emerging technologies[J]. Chemical Society Reviews, 2021, 50(5): 3315-3354.
|
6 |
Hu Z P, Yang D D, Wang Z, et al. State-of-the-art catalysts for direct dehydrogenation of propane to propylene[J]. Chinese Journal of Catalysis, 2019, 40(9): 1233-1254.
|
7 |
Nawaz Z. Light alkane dehydrogenation to light olefin technologies: a comprehensive review[J]. Reviews in Chemical Engineering, 2015, 31(5): 413-436.
|
8 |
Carter J H, Bere T, Pitchers J R, et al. Direct and oxidative dehydrogenation of propane: from catalyst design to industrial application[J]. Green Chemistry, 2021, 23(24): 9747-9799.
|
9 |
Wang G W, Zhang S, Zhu X L, et al. Dehydrogenation versus hydrogenolysis in the reaction of light alkanes over Ni-based catalysts[J]. Journal of Industrial and Engineering Chemistry, 2020, 86: 1-12.
|
10 |
Wu J, Mallikarjun Sharada S, Ho C, et al. Ethane and propane dehydrogenation over PtIr/Mg(Al)O[J]. Applied Catalysis A: General, 2015, 506: 25-32.
|
11 |
Kaylor N, Davis R J. Propane dehydrogenation over supported Pt-Sn nanoparticles[J]. Journal of Catalysis, 2018, 367: 181-193.
|
12 |
Nakaya Y, Hirayama J, Yamazoe S, et al. Single-atom Pt in intermetallics as an ultrastable and selective catalyst for propane dehydrogenation[J]. Nature Communications, 2020, 11(1): 2838.
|
13 |
Gao X F, Xu W H, Li X, et al. Non-oxidative dehydrogenation of propane to propene over Pt-Sn/Al2O3 catalysts: identification of the nature of active site[J]. Chemical Engineering Journal, 2022, 443: 136393.
|
14 |
Sun Q M, Wang N, Fan Q Y, et al. Subnanometer bimetallic platinum-zinc clusters in zeolites for propane dehydrogenation[J]. Angewandte Chemie International Edition, 2020, 59(44): 19450-19459.
|
15 |
Rochlitz L, Searles K, Alfke J, et al. Silica-supported, narrowly distributed, subnanometric Pt-Zn particles from single sites with high propane dehydrogenation performance[J]. Chemical Science, 2020, 11(6): 1549-1555.
|
16 |
Qiu Y, Li X Y, Zhang Y Y, et al. Various metals (Ce, In, La, and Fe) promoted Pt/Sn-SBA-15 as highly stable catalysts for propane dehydrogenation[J]. Industrial & Engineering Chemistry Research, 2019, 58(25): 10804-10818.
|
17 |
Wang G J, Lu K, Yin C Q, et al. One-step fabrication of PtSn/γ-Al2O3 catalysts with La post-modification for propane dehydrogenation[J]. Catalysts, 2020, 10(9): 1042.
|
18 |
Searles K, Chan K W, Mendes Burak J A, et al. Highly productive propane dehydrogenation catalyst using silica-supported Ga-Pt nanoparticles generated from single-sites[J]. Journal of the American Chemical Society, 2018, 140(37): 11674-11679.
|
19 |
Zhang J X, Ren L M, Zhou A J, et al. Tailored synthesis of ZSM-5 nanosheets with controllable b-axis thickness and aspect ratio: strategy and growth mechanism[J]. Chemistry of Materials, 2022, 34(7): 3217-3226.
|
20 |
Shang Z Y, Chen Y, Zhang L J, et al. Constructing single-crystalline hierarchical plate-like ZSM-5 zeolites with short b-axis length for catalyzing MTO reactions[J]. Inorganic Chemistry Frontiers, 2022, 9(7): 1456-1466.
|
21 |
王子健, 柯明, 李佳涵, 等. 短b轴ZSM-5分子筛制备方法及应用研究进展[J]. 化工学报, 2023, 74(4): 1457-1473.
|
|
Wang Z J, Ke M, Li J H, et al. Progress in preparation and application of short b-axis ZSM-5 molecular sieve[J]. CIESC Journal, 2023, 74(4): 1457-1473.
|
22 |
Zhang B F, Li G Z, Liu S B, et al. Boosting propane dehydrogenation over PtZn encapsulated in an epitaxial high-crystallized zeolite with a low surface barrier[J]. ACS Catalysis, 2022, 12(2): 1310-1314.
|
23 |
Dai W J, Kouvatas C, Tai W S, et al. Platelike MFI crystals with controlled crystal faces aspect ratio[J]. Journal of the American Chemical Society, 2021, 143(4): 1993-2004.
|
24 |
Li Z Z, Liao Y Q, Wang Y D, et al. A co-solvent in aqueous electrolyte towards ultralong-life rechargeable zinc-ion batteries[J]. Energy Storage Materials, 2023, 56: 174-182.
|
25 |
Han A J, Zhang J, Sun W M, et al. Isolating contiguous Pt atoms and forming Pt-Zn intermetallic nanoparticles to regulate selectivity in 4-nitrophenylacetylene hydrogenation[J]. Nature Communications, 2019, 10(1): 3787.
|
26 |
Kuroki H, Matsumoto M, Tamaki T, et al. Analysis of oxidized Pt species on a connected Pt-Fe catalyst with enhanced oxygen reduction activity probed by electrochemical XPS[J]. Journal of Chemical Engineering of Japan, 2023, 56(1): 2197946.
|
27 |
Zhang L K, Ma Y, Liu C C, et al. Demetallation and reduction induced ultra-dispersed PtZn alloy confined in zeolite for propane dehydrogenation[J]. Chinese Journal of Catalysis, 2023, 55: 241-252.
|
28 |
Zhang Y N, Zhang X Y, Yang P F, et al. In situ topologically induced PtZn alloy @ ZnTiO x and the synergistic effect on glycerol oxidation[J]. Applied Catalysis B: Environmental, 2021, 298: 120634.
|
29 |
Nykänen L, Honkala K. Density functional theory study on propane and propene adsorption on Pt(111) and PtSn alloy surfaces[J]. The Journal of Physical Chemistry C, 2011, 115(19): 9578-9586.
|
30 |
Shan Y L, Sui Z J, Zhu Y A, et al. Effect of steam addition on the structure and activity of Pt-Sn catalysts in propane dehydrogenation[J]. Chemical Engineering Journal, 2015, 278: 240-248.
|
31 |
Li Q, Sui Z J, Zhou X G, et al. Kinetics of propane dehydrogenation over Pt-Sn/Al2O3 catalyst[J]. Applied Catalysis A: General, 2011, 398(1/2): 18-26.
|