化工学报 ›› 2024, Vol. 75 ›› Issue (9): 3176-3187.DOI: 10.11949/0438-1157.20240307
王树振(), 王玉婷, 马梦茜, 张巍, 向江南, 鲁海莹, 王琰(), 范彬彬, 郑家军, 代卫炯, 李瑞丰
收稿日期:
2024-03-18
修回日期:
2024-04-28
出版日期:
2024-09-25
发布日期:
2024-10-10
通讯作者:
王琰
作者简介:
王树振(1998—),男,硕士研究生,2544971753@qq.com
基金资助:
Shuzhen WANG(), Yuting WANG, Mengxi MA, Wei ZHANG, Jiangnan XIANG, Haiying LU, Yan WANG(), Binbin FAN, Jiajun ZHENG, Weijiong DAI, Ruifeng LI
Received:
2024-03-18
Revised:
2024-04-28
Online:
2024-09-25
Published:
2024-10-10
Contact:
Yan WANG
摘要:
采用两步晶化法,通过调节加入铝源的时间合成了一系列ZSM-22分子筛,并对其酸性位点的分布进行调控。采用XRD、SEM、N2吸附/脱附、NH3-TPD、FTIR、Py-IR、ICP、TEM-EDS等表征方法对其物相、形貌、织构性质、酸性和元素进行表征分析。结果表明,第二步晶化时,加入铝源,在模板剂诱导作用下,促使第一步晶化后高硅ZSM-22表面未晶化的无定形硅酸盐原位合成了ZSM-22分子筛,使高硅ZSM-22表面生长一层低硅铝比ZSM-22分子筛,从而使分子筛的酸性位点发生改变。制备了Pt负载双功能催化剂,研究其正十二烷的临氢异构化反应性能。结果表明,两步晶化ZSM-22分子筛可以抑制微孔内的裂化反应,获得更高异构产物选择性,其中S6-C在330℃时,转化率为89.3%,选择性89.4%,产率79.8%。通过两步晶化方式合成的ZSM-22分子筛,活性位点更多地位于分子筛的外表面和孔口附近,进而改变其异构体产物的分布,降低支链位于碳链端位异构体的比例,更倾向于生成支链位于碳链中间位置的异构体,S12-C的2-甲基十一烷分布比例比常规ZSM-22降低10%左右。
中图分类号:
王树振, 王玉婷, 马梦茜, 张巍, 向江南, 鲁海莹, 王琰, 范彬彬, 郑家军, 代卫炯, 李瑞丰. 两步晶化合成ZSM-22分子筛及其临氢异构反应性能[J]. 化工学报, 2024, 75(9): 3176-3187.
Shuzhen WANG, Yuting WANG, Mengxi MA, Wei ZHANG, Jiangnan XIANG, Haiying LU, Yan WANG, Binbin FAN, Jiajun ZHENG, Weijiong DAI, Ruifeng LI. Synthesis of ZSM-22 molecular sieve by two-step crystallization and its hydroisomerization performance[J]. CIESC Journal, 2024, 75(9): 3176-3187.
样品 | BET比表面积/(m2/g) | 微孔比表面积/(m2/g) | 外比表面积/(m2/g) | 孔体积/(cm3/g) | 微孔体积/(cm3/g) | 介孔体积/(cm3/g) |
---|---|---|---|---|---|---|
Z-22 | 209 | 169 | 40 | 0.15 | 0.07 | 0.08 |
S6-C | 226 | 185 | 41 | 0.14 | 0.07 | 0.07 |
S7-C | 247 | 212 | 35 | 0.17 | 0.08 | 0.09 |
S8-C | 267 | 227 | 40 | 0.16 | 0.08 | 0.08 |
S12-C | 270 | 251 | 19 | 0.14 | 0.09 | 0.05 |
S&C | 228 | 203 | 25 | 0.15 | 0.08 | 0.07 |
S36 | 297 | 278 | 19 | 0.14 | 0.1 | 0.04 |
表1 两步晶化样品的织构性质
Table 1 Texture properties of the two-step crystallized samples
样品 | BET比表面积/(m2/g) | 微孔比表面积/(m2/g) | 外比表面积/(m2/g) | 孔体积/(cm3/g) | 微孔体积/(cm3/g) | 介孔体积/(cm3/g) |
---|---|---|---|---|---|---|
Z-22 | 209 | 169 | 40 | 0.15 | 0.07 | 0.08 |
S6-C | 226 | 185 | 41 | 0.14 | 0.07 | 0.07 |
S7-C | 247 | 212 | 35 | 0.17 | 0.08 | 0.09 |
S8-C | 267 | 227 | 40 | 0.16 | 0.08 | 0.08 |
S12-C | 270 | 251 | 19 | 0.14 | 0.09 | 0.05 |
S&C | 228 | 203 | 25 | 0.15 | 0.08 | 0.07 |
S36 | 297 | 278 | 19 | 0.14 | 0.1 | 0.04 |
样品 | 酸量/(μmol/g) | 总酸量/(μmol/g) | 表面Si/Al① | Si/Al② | R③ | |
---|---|---|---|---|---|---|
弱酸 | 强酸 | |||||
Z-22 | 435 | 308 | 743 | 21 | 45 | 2.14 |
S6-C | 273 | 207 | 480 | 26 | 65 | 2.51 |
S7-C | 228 | 168 | 396 | 25 | 76 | 3.04 |
S8-C | 223 | 152 | 377 | 22 | 79 | 3.61 |
S12-C | 189 | 149 | 338 | 32 | 122 | 3.81 |
S&C | 190 | 151 | 341 | — | — | |
S36 | 25 | 23 | 48 | 85 | — |
表2 由NH3-TPD曲线计算的酸浓度特性和元素分析
Table 2 Acidity properties calculated by NH3-TPD curve and elemental analysis
样品 | 酸量/(μmol/g) | 总酸量/(μmol/g) | 表面Si/Al① | Si/Al② | R③ | |
---|---|---|---|---|---|---|
弱酸 | 强酸 | |||||
Z-22 | 435 | 308 | 743 | 21 | 45 | 2.14 |
S6-C | 273 | 207 | 480 | 26 | 65 | 2.51 |
S7-C | 228 | 168 | 396 | 25 | 76 | 3.04 |
S8-C | 223 | 152 | 377 | 22 | 79 | 3.61 |
S12-C | 189 | 149 | 338 | 32 | 122 | 3.81 |
S&C | 190 | 151 | 341 | — | — | |
S36 | 25 | 23 | 48 | 85 | — |
样品 | 150℃时酸量/(μmol/g) | 350℃时酸量/(μmol/g) | 总酸量 | BW①/% | ||||
---|---|---|---|---|---|---|---|---|
B | L | B | L | B | L | B/L | ||
Z-22 | 12 | 15 | 93 | 21 | 105 | 36 | 2.92 | 11.4 |
S6-C | 19 | 17 | 56 | 12 | 75 | 29 | 2.58 | 25.3 |
S12-C | 2 | 18 | 43 | 9 | 45 | 27 | 1.67 | 4.4 |
表3 通过吡啶红外曲线计算出分子筛的酸特性
Table 3 Acidity properties of molecular sieve calculated by Py-IR spectra
样品 | 150℃时酸量/(μmol/g) | 350℃时酸量/(μmol/g) | 总酸量 | BW①/% | ||||
---|---|---|---|---|---|---|---|---|
B | L | B | L | B | L | B/L | ||
Z-22 | 12 | 15 | 93 | 21 | 105 | 36 | 2.92 | 11.4 |
S6-C | 19 | 17 | 56 | 12 | 75 | 29 | 2.58 | 25.3 |
S12-C | 2 | 18 | 43 | 9 | 45 | 27 | 1.67 | 4.4 |
1 | Wei C H, Zhang G H, Zhao L, et al. Effect of metal-acid balance and textual modifications on hydroisomerization catalysts for n-alkanes with different chain length: a mini-review[J]. Fuel, 2022, 315: 122809. |
2 | Shamzhy M, Opanasenko M, Concepción P, et al. New trends in tailoring active sites in zeolite-based catalysts[J]. Chemical Society Reviews, 2019, 48(4): 1095-1149. |
3 | Niu P Y, Xi H J, Ren J, et al. Micropore blocked core-shell ZSM-22 designed via epitaxial growth with enhanced shape selectivity and high n-dodecane hydroisomerization performance[J]. Catalysis Science & Technology, 2018, 8(24): 6407-6419. |
4 | Song H, Zhao L L, Wang N. Rare earth metals modified Ni-S2O8 2-/ZrO2-Al2O3 catalysts for n-pentane isomerization[J]. Chinese Journal of Chemical Engineering, 2017, 25(1): 74-78. |
5 | Liu P, Yao Y, Zhang X G, et al. Rare earth metals ion-exchanged β-zeolites as supports of platinum catalysts for hydroisomerization of n-heptane[J]. Chinese Journal of Chemical Engineering, 2011, 19(2): 278-284. |
6 | Smeeth M, Spikes H, Gunsel S. Boundary film formation by viscosity index improvers[J]. Tribology Transactions, 1996, 39(3): 726-734. |
7 | Xiang J N, Zhang W, Zhang H P, et al. Effect of Fe substitution over ZSM-48 on performance of n-dodecane hydroisomerization and distribution of isomers[J]. Solid State Sciences, 2023, 142: 107250. |
8 | Needham D E, Wei I C, Seybold P G. Molecular modeling of the physical properties of alkanes[J]. Journal of the American Chemical Society, 1988, 110(13): 4186-4194. |
9 | Brennan J A. Wide-temperature range synthetic hydrocarbon fluids[J]. Industrial & Engineering Chemistry Product Research and Development, 1980, 19(1): 2-6. |
10 | Claude M C, Martens J A. Monomethyl-branching of long n-alkanes in the range from decane to tetracosane on Pt/H-ZSM-22 bifunctional catalyst[J]. Journal of Catalysis, 2000, 190(1): 39-48. |
11 | Jaroszewska K, Masalska A, Grzechowiak J R. Hydroisomerization of long-chain bio-derived n-alkanes into monobranched high cetane isomers via a dual-component catalyst bed[J]. Fuel, 2020, 268: 117239. |
12 | Roldán R, Beale A M, Sánchez-Sánchez M, et al. Effect of the impregnation order on the nature of metal particles of bi-functional Pt/Pd-supported zeolite beta materials and on their catalytic activity for the hydroisomerization of alkanes[J]. Journal of Catalysis, 2008, 254(1): 12-26. |
13 | Childers D, Saha A, Schweitzer N, et al. Correlating heat of adsorption of CO to reaction selectivity: geometric effects vs electronic effects in neopentane isomerization over Pt and Pd catalysts[J]. ACS Catalysis, 2013, 3(11): 2487-2496. |
14 | Meng L Q, Vanbutsele G, Pestman R, et al. Mechanistic aspects of n-paraffins hydrocracking: influence of zeolite morphology and acidity of Pd(Pt)/ZSM-5 catalysts[J]. Journal of Catalysis, 2020, 389: 544-555. |
15 | Munusamy K, Das R K, Ghosh S, et al. Synthesis, characterization and hydroisomerization activity of ZSM-22/23 intergrowth zeolite[J]. Microporous and Mesoporous Materials, 2018, 266: 141-148. |
16 | Choudhury I R, Hayasaka K, Thybaut J W, et al. Pt/H-ZSM-22 hydroisomerization catalysts optimization guided by single-event microkinetic modeling[J]. Journal of Catalysis, 2012, 290: 165-176. |
17 | Laxmi Narasimhan C S, Thybaut J W, Marin G B, et al. Relumped single-event microkinetic model for alkane hydrocracking on shape-selective catalysts: catalysis on ZSM-22 pore mouths, bridge acid sites and micropores[J]. Chemical Engineering Science, 2004, 59(22/23): 4765-4772. |
18 | Liu S Y, He Y R, Zhang H K, et al. Design and synthesis of Ga-doped ZSM-22 zeolites as highly selective and stable catalysts for n-dodecane isomerization[J]. Catalysis Science & Technology, 2019, 9(11): 2812-2827. |
19 | Niu P Y, Liu P, Xi H J, et al. Crystallization mechanism of pure-silica ZSM-22 in the seed-assistant system[J]. Crystal Growth & Design, 2018, 18(11): 6591-6601. |
20 | Wang X Y, Zhang X W, Wang Q F. n-Dodecane hydroisomerization over hierarchical ZSM-22 prepared by a dual-protected alkali treatment[J]. Industrial & Engineering Chemistry Research, 2019, 58(19): 8495-8505. |
21 | Jacobs P A, Beyer H K, Valyon J. Properties of the end members in the Pentasil-family of zeolites: characterization as adsorbents[J]. Zeolites, 1981, 1(3): 161-168. |
22 | Zhao J, Yin Y C, Li Y, et al. Synthesis and characterization of mesoporous zeolite Y by using block copolymers as templates[J]. Chemical Engineering Journal, 2016, 284: 405-411. |
23 | Lu P, Chen L, Zhang Y F, et al. Rapid synthesis of ZSM-22 zeolites using imidazolium-based ionic liquids as OSDAs in fluoride media[J]. Microporous and Mesoporous Materials, 2016, 236: 193-201. |
24 | 程群. X射线衍射法测定高岭石合成的NaY分子筛物相组成、结晶度、晶胞参数及硅铝比研究[J]. 冶金标准化与质量, 2006, 44(2): 8-10. |
Cheng Q. Study on determining composition, crystallinity, cell parameter and ratio of silicate to aluminium of zeolite NaY treated from kaolinite by X-ray diffractometer[J]. Metallurgical Standardization & Quality, 2006, 44(2): 8-10. | |
25 | 储刚,陈刚. X射线衍射法测定ZSM-5分子筛硅铝比[J]. 石油化工, 1995, 24(7): 498-506. |
Chu G, Chen G. Determination of SiO2/Al2O3 ratio of ZSM-5 molecular sieve by X-ray diffraction[J]. Petrochemical Technology, 1995, 24(7): 498-499, 506. | |
26 | Niu P Y, Xi H J, Ren J, et al. High selectivity for n-dodecane hydroisomerization over highly siliceous ZSM-22 with low Pt loading[J]. Catalysis Science & Technology, 2017, 7(21): 5055-5068. |
27 | Emeis C A. Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts[J]. Journal of Catalysis, 1993, 141(2): 347-354. |
28 | Zholobenko V, Freitas C, Jendrlin M, et al. Probing the acid sites of zeolites with pyridine: quantitative AGIR measurements of the molar absorption coefficients[J]. Journal of Catalysis, 2020, 385: 52-60. |
29 | Pieterse J A Z, Veefkind-Reyes S, Seshan K, et al. On the accessibility of acid sites in ferrierite for pyridine[J]. Journal of Catalysis, 1999, 187(2): 518-520. |
30 | Wang L, Niu P Y, Xi H J, et al. Controllable synthesis of core-shell structured ZSM-22 via one-pot approach[J]. Journal of Solid State Chemistry, 2023, 317: 123663. |
31 | Hayasaka K, Liang D D, Huybrechts W, et al. Formation of ZSM-22 zeolite catalytic particles by fusion of elementary nanorods[J]. Chemistry, 2007, 13(36): 10070-10077. |
32 | Wang L, Niu P Y, Xi H J, et al. Facile synthesis of size-controlled ZSM-22 zeolite along the [001] direction via two-step crystallization[J]. Industrial & Engineering Chemistry Research, 2021, 60(47): 17006-17015. |
33 | Liu L L, Zhang M W, Wang L, et al. Modulating acid site distribution in MTT channels for controllable hydroisomerization of long-chain n-alkanes[J]. Fuel Processing Technology, 2023, 241: 107605. |
34 | Zhang M W, Liu L L, Wang L, et al. Four-carbon segmented discrete hydrocracking of long-chain paraffins in MTT channels following a pore-mouth mechanism[J]. ACS Catalysis, 2022, 12(16): 10313-10325. |
[1] | 王冉, 王焕, 熊晓云, 关慧敏, 郑云锋, 陈彩琳, 秦玉才, 宋丽娟. FCC催化剂传质强化活性位利用效率的可视化分析[J]. 化工学报, 2024, 75(9): 3198-3209. |
[2] | 王靖宇, 刘佳, 徐继香, 王磊. 薄片状PtZn@Silicalite-1分子筛的合成及催化丙烷脱氢性能研究[J]. 化工学报, 2024, 75(9): 3188-3197. |
[3] | 刘亚超, 谭晓杰, 李旭东, 王瑞, 王慧, 韩璇, 赵青山. DES合成高活性CoCO3纳米片及析氧反应性能研究[J]. 化工学报, 2024, 75(9): 3320-3328. |
[4] | 张梦婷, 王书林, 桑熙, 元兴昊, 徐刚. 人工Cu-TM1459金属酶催化不对称迈克尔加成反应[J]. 化工学报, 2024, 75(9): 3255-3265. |
[5] | 刘旭升, 李泽洋, 杨宇森, 卫敏. 电催化二氧化碳还原制备气态产物的研究进展[J]. 化工学报, 2024, 75(7): 2385-2408. |
[6] | 罗莉, 陈文尧, 张晶, 钱刚, 周兴贵, 段学志. 氧化铝结构与表面性质调控及其催化甲醇脱水制二甲醚性能研究[J]. 化工学报, 2024, 75(7): 2522-2532. |
[7] | 王寅, 初鹏飞, 刘虎, 吕静, 黄守莹, 王胜平, 马新宾. 不同pH铝溶胶对二甲醚羰基化成型丝光沸石催化剂性能的影响[J]. 化工学报, 2024, 75(7): 2533-2543. |
[8] | 杨露, 刘聪聪, 孟彤彤, 张博远, 杨腾飞, 邓文安, 王晓斌. 分散型催化剂在煤/重油共炼体系中的加氢抑焦作用[J]. 化工学报, 2024, 75(7): 2556-2564. |
[9] | 黄静茹, 陈佳轩, 张群锋, 阮晋, 朱来, 叶光华, 周兴贵. ZSM-5分子筛结构对苯烷基化反应性能影响的数值模拟研究[J]. 化工学报, 2024, 75(7): 2544-2555. |
[10] | 王天闻, 闫肃, 赵梦园, 杨天让, 刘建国. 固体氧化物电池空气电极铬中毒机理及抗铬性能研究进展[J]. 化工学报, 2024, 75(6): 2091-2108. |
[11] | 冀钟, 赵彦玲, 陈雨濛, 高林霞, 王翼鹏, 刘欢. ZSM-5分子筛对典型涂装VOCs的吸附性能及机理研究[J]. 化工学报, 2024, 75(6): 2332-2343. |
[12] | 丁禹, 杨昌泽, 李军, 孙会东, 商辉. 原子尺度钼系加氢脱硫催化剂的研究进展与展望[J]. 化工学报, 2024, 75(5): 1735-1749. |
[13] | 赵亭亭, 鄢立祥, 唐福利, 肖敏之, 谭烨, 宋刘斌, 肖忠良, 李灵均. 光辅助锂-二氧化碳电池催化剂的设计策略与反应机理研究进展[J]. 化工学报, 2024, 75(5): 1750-1764. |
[14] | 莫锦洪, 韩雪, 朱毅翔, 李菁, 王旭裕, 纪红兵. Pt-Ga/CeO2-ZrO2-Al2O3脱氢裂解双功能催化剂用于正丁烷催化制烯烃研究[J]. 化工学报, 2024, 75(5): 1855-1869. |
[15] | 秦晗淞, 李国梁, 闫昊, 冯翔, 刘熠斌, 陈小博, 杨朝合. 多级孔ZSM-5分子筛中油酸甲酯催化裂解吸附和扩散行为模拟研究[J]. 化工学报, 2024, 75(5): 1870-1881. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 137
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 117
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||