1 |
Sattler J J H B, Ruiz-Martinez J, Santillan-Jimenez E, et al. Catalytic dehydrogenation of light alkanes on metals and metal oxides[J]. Chemical Reviews, 2014, 114(20): 10613-10653.
|
2 |
刘治华, 李宇静. 中国丙烯市场回顾及“十四五”展望[J]. 现代化工, 2021, 41(8): 16-18.
|
|
Liu Z H, Li Y J. Review of China’s propylene market and outlook for 2021—2025 period[J]. Modern Chemical Industry, 2021, 41(8):16-18.
|
3 |
Farshi A, Shaiyegh F, Burogerdi S H, et al. FCC process role in propylene demands[J]. Petroleum Science and Technology, 2011, 29(9): 875-885.
|
4 |
Akah A, Williams J, Ghrami M. An overview of light olefins production via steam enhanced catalytic cracking[J]. Catalysis Surveys from Asia, 2019, 23(4): 265-276.
|
5 |
Kim S, Jeong S, Heo E. Effects of the shale boom on ethylene and propylene prices[J]. Energy Sources Part B-Economics Planning and Policy, 2019, 14(3): 49-66.
|
6 |
Atanga M A, Rezaei F, Jawad A, et al. Oxidative dehydrogenation of propane to propylene with carbon dioxide[J]. Applied Catalysis B: Environmental, 2018, 220: 429-445.
|
7 |
Sun C Y, Luo J Y, Cao M J, et al. A comparative study on different regeneration processes of Pt-Sn/γ-Al2O3 catalysts for propane dehydrogenation[J]. Journal of Energy Chemistry, 2018, 27(1): 311-318.
|
8 |
Saidi M, Safaripour M. Pure hydrogen and propylene coproduction in catalytic membrane reactor-assisted propane dehydrogenation[J]. Chemical Engineering & Technology, 2020, 43(7): 1402-1415.
|
9 |
Shi L, Wang Y, Yan B, et al. Progress in selective oxidative dehydrogenation of light alkanes to olefins promoted by boron nitride catalysts[J]. Chemical Communications, 2018, 54(78): 10936-10946.
|
10 |
Zhao Z J, Chiu C C, Gong J L. Molecular understandings on the activation of light hydrocarbons over heterogeneous catalysts[J]. Chemical Science, 2015, 6(8): 4403-4425.
|
11 |
Shi L, Deng G M, Li W C, et al. Al2O3 nanosheets rich in pentacoordinate Al3+ ions stabilize Pt-Sn clusters for propane dehydrogenation[J]. Angewandte Chemie International Edition, 2015, 54(47): 13994-13998.
|
12 |
Kim S J, Liu Y J, Moore J S, et al. Thin hydrogen-selective SAPO-34 zeolite membranes for enhanced conversion and selectivity in propane dehydrogenation membrane reactors[J]. Chemistry of Materials, 2016, 28(12): 4397-4402.
|
13 |
Bai L Y, Zhou Y M, Zhang Y W, et al. Influence of the competitive adsorbates on the catalytic properties of PtSnNaMg/ZSM-5 catalysts for propane dehydrogenation[J]. Industrial & Engineering Chemistry Research, 2011, 50(8): 4345-4350.
|
14 |
Ricca A, Montella F, Iaquaniello G, et al. Membrane assisted propane dehydrogenation: experimental investigation and mathematical modelling of catalytic reactions[J]. Catalysis Today, 2019, 331: 43-52.
|
15 |
Chang J S, Roh H S, Park M S, et al. Propane dehydrogenation over a hydrogen permselective membrane reactor[J]. Bulletin of the Korean Chemical Society, 2002, 23(5): 674-678.
|
16 |
Schäfer R, Noack M, Kölsch P, et al. Comparison of different catalysts in the membrane-supported dehydrogenation of propane[J]. Catalysis Today, 2003, 82(1/2/3/4): 15-23.
|
17 |
Weyten H, Luyten J, Keizer K, et al. Membrane performance: the key issues for dehydrogenation reactions in a catalytic membrane reactor[J]. Catalysis Today, 2000, 56(1/2/3): 3-11.
|
18 |
Moparthi A, Uppaluri R, Gill B S. Economic feasibility of silica and palladium composite membranes for industrial dehydrogenation reactions[J]. Chemical Engineering Research and Design, 2010, 88(8): 1088-1101.
|
19 |
Jowkary H, Farsi M, Rahimpour M R. Supporting the propane dehydrogenation reactors by hydrogen permselective membrane modules to produce ultra-pure hydrogen and increasing propane conversion: process modeling and optimization[J]. International Journal of Hydrogen Energy, 2020, 45(12): 7364-7373.
|
20 |
Choi S W, Sholl D S, Nair S, et al. Modeling and process simulation of hollow fiber membrane reactor systems for propane dehydrogenation[J]. AIChE Journal, 2017, 63(10): 4519-4531.
|
21 |
Li G, Kanezashi M, Yoshioka T, et al. Ammonia decomposition in catalytic membrane reactors: simulation and experimental studies[J]. AIChE Journal, 2013, 59(1): 168-179.
|
22 |
Zangeneh F T, Taeb A, Gholivand K, et al. Thermodynamic equilibrium analysis of propane dehydrogenation with carbon dioxide and side reactions[J]. Chemical Engineering Communications, 2016, 203(4): 557-565.
|
23 |
Li Q, Sui Z J, Zhou X G, et al. Kinetics of propane dehydrogenation over Pt-Sn/Al2O3 catalyst[J]. Applied Catalysis A: General, 2011, 398(1/2): 18-26.
|
24 |
Kanezashi M, Miyauchi S, Nagasawa H, et al. Gas permeation properties through Al-doped organosilica membranes with controlled network size[J]. Journal of Membrane Science, 2014, 466: 246-252.
|
25 |
Han H H, Ryu S H, Nakao S I, et al. Gas permeation properties and preparation of porous ceramic membrane by CVD method using siloxane compounds[J]. Journal of Membrane Science, 2013, 431: 72-78.
|
26 |
Messaoud S B, Takagaki A, Sugawara T, et al. Alkylamine-silica hybrid membranes for carbon dioxide/methane separation[J]. Journal of Membrane Science, 2015, 477: 161-171.
|
27 |
Ahn S J, Yun G N, Takagaki A, et al. Synthesis and characterization of hydrogen selective silica membranes prepared by chemical vapor deposition of vinyltriethoxysilane[J]. Journal of Membrane Science, 2018, 550: 1-8.
|
28 |
Wang Z G, Bian Z F, Dewangan N, et al. High-performance catalytic perovskite hollow fiber membrane reactor for oxidative propane dehydrogenation[J]. Journal of Membrane Science, 2019, 578: 36-42.
|
29 |
Saidi M. Performance assessment and evaluation of catalytic membrane reactor for pure hydrogen production via steam reforming of methanol[J]. International Journal of Hydrogen Energy, 2017, 42(25): 16170-16185.
|
30 |
van Sint Annaland M, Kuipers J A M, van Swaaij W P M. A kinetic rate expression for the time-dependent coke formation rate during propane dehydrogenation over a platinum alumina monolithic catalyst[J]. Catalysis Today, 2001, 66(2/3/4): 427-436.
|