27 |
Chen S Y, Chen P, Li Y W, et al. Catalytic Reaction Kinetics[M]. Beijing: Chemical Industry Press, 2007.
|
28 |
Ma Z R, Wu X D, Härelind H, et al. NH3-SCR reaction mechanisms of NbO x /Ce0.75Zr0.25O2 catalyst: DRIFTS and kinetics studies[J]. Journal of Molecular Catalysis A: Chemical, 2016, 423: 172-180.
|
29 |
Qi G, Yang R T. Performance and kinetics study for low-temperature SCR of NO with NH3 over MnO x -CeO2 catalyst[J]. Journal of Catalysis, 2003, 217(2): 434-441.
|
30 |
Hu X L, Qu W Y, Chen J X, et al. Speeding up low-temperature SCR with reactants-coupling dual catalytic sites[J]. Chemical Engineering Journal, 2022, 440: 135832.
|
31 |
Amiridis M D, Solar J P. Selective catalytic reduction of nitric oxide by ammonia over V2O5/TiO2, V2O5/TiO2/SiO2, and V2O5-WO3/TiO2 catalysts: effect of vanadia content on the activation energy[J]. Industrial & Engineering Chemistry Research, 1996, 35: 978-981.
|
1 |
环境保护部, 国家质量监督检验检疫总局. 火电厂大气污染物排放标准: [S]. 北京: 中国环境科学出版社, 2012.
|
|
Ministry of Environmental Protection of the People’s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Emission standard of air pollutants for thermal power plants: [S]. Beijing: China Environmental Science Press, 2012.
|
2 |
环境保护部, 国家质量监督检验检疫总局. 轻型汽车污染物排放限值及测量方法: [S]. 北京: 中国环境科学出版社, 2020.
|
|
Ministry of Environmental Protection of the People’s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Limits and measurement methods for emissions from light-duty vehicles(): GB 18352.6—2016[S]. Beijing: China Environmental Science Press, 2020.
|
3 |
Kobayashi M, Miyoshi K. WO3-TiO2 monolithic catalysts for high temperature SCR of NO by NH3: influence of preparation method on structural and physico-chemical properties, activity and durability[J]. Applied Catalysis B: Environmental, 2007, 72(3/4): 253-261.
|
4 |
Liu Z M, Zhang S X, Li J H, et al. Novel V2O5-CeO2/TiO2 catalyst with low vanadium loading for the selective catalytic reduction of NO x by NH3 [J]. Applied Catalysis B: Environmental, 2014, 158/159: 11-19.
|
5 |
Han L P, Cai S X, Gao M, et al. Selective catalytic reduction of NO x with NH3 by using novel catalysts: state of the art and future prospects[J]. Chemical Reviews, 2019, 119(19): 10916-10976.
|
6 |
李俊华, 杨恂, 常化振, 等. 烟气催化脱硝关键技术研发及应用[M]. 北京: 科学出版社, 2015.
|
|
Li J H, Yang X, Chang H Z, et al. Developmet and Application of Key Technologies for Selective Catalytic Reduction of NO x from Flue Gas[M]. Beijing: Science Press, 2015.
|
7 |
Zhu H Y, Zhang P F, Dai S. Recent advances of lanthanum-based perovskite oxides for catalysis[J]. ACS Catalysis, 2015, 5(11): 6370-6385.
|
8 |
Kim Y K, Hao L F, Park J I, et al. Catalytic activity and activation mechanism of potassium carbonate supported on perovskite oxide for coal char combustion[J]. Fuel, 2012, 94: 516-522.
|
9 |
Royer S, Duprez D, Can F, et al. Perovskites as substitutes of noble metals for heterogeneous catalysis: dream or reality[J]. Chemical Reviews, 2014, 114(20): 10292-10368.
|
10 |
Jabłońska M, Palkovits R. Perovskite-based catalysts for the control of nitrogen oxide emissions from diesel engines[J]. Catalysis Science & Technology, 2019, 9(9): 2057-2077.
|
11 |
拓凯, 张朋, 王利, 等. 钙钛矿催化剂用于氨选择性还原氮氧化物的研究进展[J]. 华中农业大学学报, 2020, 39(5): 26-34.
|
|
Tuo K, Zhang P, Wang L, et al. Perovskite catalysts for selective catalytic reduction of NO x with NH3 [J]. Journal of Huazhong Agriculture University, 2020, 39(5): 26-34.
|
12 |
Tang C J, Zhang H L, Dong L. Ceria-based catalysts for low-temperature selective catalytic reduction of NO with NH3 [J]. Catalysis Science & Technology, 2016, 6(5): 1248-1264.
|
13 |
Zhang R D, Yang W, Luo N, et al. Low-temperature NH3-SCR of NO by lanthanum manganite perovskites: effect of A-/B-site substitution and TiO2/CeO2 support[J]. Applied Catalysis B: Environmental, 2014, 146: 94-104.
|
14 |
Zhang Z K, Zhu Z Y, Shen B X, et al. Insights into biochar and hydrochar production and applications: a review[J]. Energy, 2019, 171: 581-598.
|
15 |
Fan X X, Hao L F, Gu X Y, et al. Low-temperature selective catalytic reduction of NO with NH3 over a biochar-supported perovskite oxide catalyst[J]. Energy & Fuels, 2023, 37(10): 7339-7352.
|
16 |
刘怀平, 尹海滨, 熊尚超, 等. 水泥炉窑中低温催化脱硝技术中试性能[J]. 中国环境科学, 2021, 41(7): 3169-3175.
|
|
Liu H P, Yin H B, Xiong S C, et al. A pilot scale study of low-temperature De-NO x in cement furnace[J]. China Environmental Science, 2021, 41(7): 3169-3175.
|
17 |
Valdés-Solís T, Marbán G, Fuertes A B. Kinetics and mechanism of low-temperature SCR of NO x with NH3 over vanadium oxide supported on carbon-ceramic cellular monoliths[J]. Industrial & Engineering Chemistry Research, 2004, 43(10): 2349-2355.
|
18 |
Xing J Y, Wang C B, Huang Y L, et al. A comprehensive exploration about the effects of O2, SO2 and NO on As2O3 adsorption over Cu/γ-Al2O3 SCR catalyst: a DFT study[J]. Chemical Engineering Science, 2022, 248: 117260.
|
19 |
Millan R, Cnudde P, Van Speybroeck V, et al. Mobility and reactivity of Cu+ species in Cu-CHA catalysts under NH3-SCR-NO x reaction conditions: insights from AIMD simulations[J]. JACS Au, 2021, 1(10): 1778-1787.
|
20 |
Yao X J, Wang Z, Yu S H, et al. Acid pretreatment effect on the physicochemical property and catalytic performance of CeO2 for NH3-SCR[J]. Applied Catalysis A: General, 2017, 542: 282-288.
|
21 |
Zhang N Q, Li L C, Guo Y Z, et al. A MnO2-based catalyst with H2O resistance for NH3-SCR: study of catalytic activity and reactants-H2O competitive adsorption[J]. Applied Catalysis B: Environmental, 2020, 270: 118860.
|
22 |
Kang T H, Youn S, Kim D H. Improved catalytic performance and resistance to SO2 over V2O5-WO3/TiO2 catalyst physically mixed with Fe2O3 for low-temperature NH3-SCR[J]. Catalysis Today, 2021, 376: 95-103.
|
23 |
Wang Y Z, Yi W, Yu J E, et al. Novel methods for assessing the SO2 poisoning effect and thermal regeneration possibility of MO x -WO3/TiO2 (M=Fe, Mn, Cu, and V) catalysts for NH3-SCR[J]. Environmental Science & Technology, 2020, 54(19): 12612-12620.
|
24 |
Wang C Z, Gao F Y, Ko S, et al. Structural control for inhibiting SO2 adsorption in porous MnCe nanowire aerogel catalysts for low-temperature NH3-SCR[J]. Chemical Engineering Journal, 2022, 434: 134729.
|
25 |
Gray M, Johnson M G, Dragila M I, et al. Water uptake in biochars: the roles of porosity and hydrophobicity[J]. Biomass and Bioenergy, 2014, 61: 196-205.
|
26 |
Shu Y, Zhang F, Wang H C. Manganese-cerium mixed oxides supported on rice husk based activated carbon with high sulfur tolerance for low-temperature selective catalytic reduction of nitrogen oxides with ammonia[J]. RSC Advances, 2019, 9(41): 23964-23972.
|
27 |
陈诵英, 陈平, 李永旺, 等. 催化反应动力学[M]. 北京: 化学工业出版社, 2007.
|