1 |
徐百平, 梁瑞凤, 喻慧文, 等. 双螺杆挤出机强化三角形转子作用下的腔内分布混合模拟[J]. 化工学报, 2024, 75(3): 858-866.
|
|
Xu B P, Liang R F, Yu H W, et al. Simulation of distribution mixing inside the cavity under the action of reinforced triangular rotor in twin-screw extruder[J]. CIESC Journal, 2024, 75(3): 858-866.
|
2 |
Rauwendaal C. Polymer Extrusion[M]. Munich: Hanser Publishers, 2014: 60-84.
|
3 |
Xu B P, Liang R F, Xiao S P, et al. Improving mixing by changing topology through intermeshed perturbation rings in a co-rotating non-twin screw channel[J]. Macromolecular Theory and Simulations, 2024, 33(2): 2300048.
|
4 |
Xu B P, Yu H W, Kong P. A co-rotating self-cleaning two screw extruder with an internal baffle: EP3122532[P]. 2021-09-29.
|
5 |
Yu H W, Zhao Z W, Xu B P, et al. Residence time distribution in an asymmetrical twin-screw extruder[J]. Industrial & Engineering Chemistry Research, 2023, 62(43): 17997-18008.
|
6 |
Belytschko T, Lu Y Y, Gu L. Element-free Galerkin methods[J]. International Journal for Numerical Methods in Engineering, 1994, 37(2): 229-256.
|
7 |
Atluri S N, Zhu T. A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics[J]. Computational Mechanics, 1998, 22(2): 117-127.
|
8 |
Liu G R. Mesh Free Methods: Moving Beyond the Finite Element Method[M]. Boston: CRC Press, 2002: 171-178.
|
9 |
Fries T P, Belytschko T. The extended/generalized finite element method: an overview of the method and its applications[J]. International Journal for Numerical Methods in Engineering, 2010, 84(3): 253-304.
|
10 |
Koshizuka S, Oka Y. Moving-particle semi-implicit method for fragmentation of incompressible fluid[J]. Nuclear Science and Engineering, 1996, 123(3): 421-434.
|
11 |
Gotoh H, Khayyer A. Current achievements and future perspectives for projection-based particle methods with applications in ocean engineering[J]. Journal of Ocean Engineering and Marine Energy, 2016, 2(3): 251-278.
|
12 |
Khayyer A, Gotoh H, Shimizu Y, et al. On enhancement of energy conservation properties of projection-based particle methods[J]. European Journal of Mechanics-B/Fluids, 2017, 66: 20-37.
|
13 |
Khayyer A, Gotoh H, Shimizu Y. Comparative study on accuracy and conservation properties of two particle regularization schemes and proposal of an optimized particle shifting scheme in ISPH context[J]. Journal of Computational Physics, 2017, 332: 236-256.
|
14 |
肖鑫坤, 蔡庆航, 陈荣华, 等. 基于MPS方法的离散固体与流体相互作用数值模拟研究[J]. 原子能科学技术, 2022, 56(6): 1104-1111.
|
|
Xiao X K, Cai Q H, Chen R H, et al. Study on fluid-solid coupling problem with discrete solid interaction based on MPS method[J]. Atomic Energy Science and Technology, 2022, 56(6): 1104-1111.
|
15 |
Luo M, Khayyer A, Lin P Z. Particle methods in ocean and coastal engineering[J]. Applied Ocean Research, 2021, 114: 102734.
|
16 |
Dong T W, Wu J C. Simulation of non-Newtonian flows in a partially filled twin-screw extruder by smoothed particle hydrodynamics[J]. Polymer Engineering & Science, 2022, 62(3): 802-814.
|
17 |
Eitzlmayr A, Matić J, Khinast J. Analysis of flow and mixing in screw elements of corotating twin-screw extruders via SPH[J]. AIChE Journal, 2017, 63(6): 2451-2463.
|
18 |
Bauer H, Matić J, Khinast J. Characteristic parameters and process maps for fully-filled twin-screw extruder elements[J]. Chemical Engineering Science, 2021, 230: 116202.
|
19 |
Lind S J, Xu R, Stansby P K, et al. Incompressible smoothed particle hydrodynamics for free-surface flows: a generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves[J]. Journal of Computational Physics, 2012, 231(4): 1499-1523.
|
20 |
Yamamoto Y, Sato T, Anraku G. Dynamic simulation of water and soil using particle method[C]//Small Engine Technology Conference & Exposition. Society of Automotive Engineers of Japan, 2011.
|
21 |
Guo D, Chen F C, Liu J, et al. Numerical modeling of churning power loss of gear system based on moving particle method[J]. Tribology Transactions, 2020, 63(1): 182-193.
|
22 |
Liu H L, Wei T Y, Zhou J, et al. Research on characteristics of splash lubrication and power losses of reducer based on MPS method[J]. Lubrication Science, 2023, 35(8): 596-615.
|
23 |
Shen L J, Zhu Y M, Shao S, et al. Research on splash lubrication characteristics of a spiral bevel gearbox based on the MPS method[J]. Lubricants, 2023, 11(12): 520.
|
24 |
Ellwanger F, Pernice L, Karbstein H P, et al. Investigating local residence time and thermomechanical stress profile in twin-screw extrusion of plant proteins by using the moving particle semi-implicit simulation method[J]. Journal of Food Engineering, 2023, 359: 111665.
|
25 |
Li G, Duan G, Liu X, et al. Moving Particle Semi-implicit Method: Recent Developments and Applications[M]. Amsterdam: Megan Ball Publishers, 2023: 7-19.
|
26 |
Sarkar A, Wassgren C R. Simulation of a continuous granular mixer: effect of operating conditions on flow and mixing[J]. Chemical Engineering Science, 2009, 64(11): 2672-2682.
|
27 |
Poux M, Fayolle P, Bertrand J, et al. Powder mixing: some practical rules applied to agitated systems[J]. Powder Technology, 1991, 68(3): 213-234.
|
28 |
Sousa P C, Pinho F T, Oliveira M S N, et al. Extensional flow of blood analog solutions in microfluidic devices[J]. Biomicrofluidics, 2011, 5(1): 14108.
|
29 |
Haward S J, McKinley G H, Shen A Q. Elastic instabilities in planar elongational flow of monodisperse polymer solutions[J]. Scientific Reports, 2016, 6(1): 33029.
|
30 |
Radl S, Kalvoda E, Glasser B J, et al. Mixing characteristics of wet granular matter in a bladed mixer[J]. Powder Technology, 2010, 200(3): 171-189.
|
31 |
Marigo M, Cairns D L, Davies M, et al. Developing mechanistic understanding of granular behaviour in complex moving geometry using the discrete element method[J]. Powder Technology, 2011, 212(1): 17-24.
|
32 |
Chaudhuri B, Muzzio F J, Tomassone M S. Modeling of heat transfer in granular flow in rotating vessels[J]. Chemical Engineering Science, 2006, 61(19): 6348-6360.
|
33 |
Hadjighasem A, Haller G. Level set formulation of two-dimensional Lagrangian vortex detection methods[J]. Chaos, 2016, 26(10): 103102.
|