化工学报 ›› 2024, Vol. 75 ›› Issue (6): 2214-2221.DOI: 10.11949/0438-1157.20240194
徐嘉宇1,2(), 陈飞国1(
), 徐骥1, 葛蔚1,2(
)
收稿日期:
2024-02-23
修回日期:
2024-05-03
出版日期:
2024-06-25
发布日期:
2024-07-03
通讯作者:
陈飞国,葛蔚
作者简介:
徐嘉宇(1999—),男,硕士研究生,xujiayu@ipe.ac.cn
基金资助:
Jiayu XU1,2(), Feiguo CHEN1(
), Ji XU1, Wei GE1,2(
)
Received:
2024-02-23
Revised:
2024-05-03
Online:
2024-06-25
Published:
2024-07-03
Contact:
Feiguo CHEN, Wei GE
摘要:
对颗粒混合物均匀性的系统研究揭示了混合过程中显著的多尺度特征,特别是宏尺度上均匀的混合物在微尺度上可能表现为极度不均匀,反之亦然,同时采用不同的采样方法和混合指数表征同一混合物在同一尺度下的均匀性可能也会有所差异。尝试提出一种多尺度混合指数,即在不同尺度采用不同评价方法,并将混合指数表达为不同尺度上的分布,而不是在未定义尺度上的单一值。该多尺度表征方法可更精确与全面地反映混合物的均匀特性。
中图分类号:
徐嘉宇, 陈飞国, 徐骥, 葛蔚. 颗粒体系的多尺度混合指数[J]. 化工学报, 2024, 75(6): 2214-2221.
Jiayu XU, Feiguo CHEN, Ji XU, Wei GE. Multiscale mixing index for granular systems[J]. CIESC Journal, 2024, 75(6): 2214-2221.
参数 | 示例Ⅰ | 示例Ⅱ | 示例Ⅲ | 示例Ⅳ |
---|---|---|---|---|
几何尺寸 | ||||
高度H/mm | 60 | 60 | 50 | 60 |
宽度W/mm | 15 | 15 | 15 | 15 |
深度D/mm | 15 | 15 | 15 | 15 |
进料管直径Dt/mm | 2 | 2 | 2 | 2 |
进料管位置H进料口/mm | 40 | 40 | 30 | 40 |
颗粒物性 | ||||
颗粒直径dp/mm | 0.1 | 0.1 | 0.1 | 0.1 |
颗粒密度ρ/(kg/m3) | 2490 | 2490 | 2490 | 2490 |
杨氏模量E/Pa | 6.89×107 | 6.89×107 | 6.89×107 | 6.89×107 |
泊松比υ | 0.22 | 0.22 | 0.22 | 0.22 |
恢复系数e | 0.926 | 0.926 | 0.926 | 0.926 |
摩擦系数λs | 0.092 | 0.092 | 0.092 | 0.092 |
滚动摩擦系数λr | 0.1 | 0.1 | 0.1 | 0.1 |
操作参数 | ||||
质量流率G/(kg/s) | 3.92×10-4 | 3.92×10-4 | 3.92×10-4 | 3.92×10-4 |
持续时间t/s | 2.0 | 1.0 | 1.0 | 1.5 |
混合物厚度δ/mm | 1.6 | 1.0 | 1.0 | 1.3 |
表1 颗粒混合物生成参数
Table 1 Parameters for mixture generation
参数 | 示例Ⅰ | 示例Ⅱ | 示例Ⅲ | 示例Ⅳ |
---|---|---|---|---|
几何尺寸 | ||||
高度H/mm | 60 | 60 | 50 | 60 |
宽度W/mm | 15 | 15 | 15 | 15 |
深度D/mm | 15 | 15 | 15 | 15 |
进料管直径Dt/mm | 2 | 2 | 2 | 2 |
进料管位置H进料口/mm | 40 | 40 | 30 | 40 |
颗粒物性 | ||||
颗粒直径dp/mm | 0.1 | 0.1 | 0.1 | 0.1 |
颗粒密度ρ/(kg/m3) | 2490 | 2490 | 2490 | 2490 |
杨氏模量E/Pa | 6.89×107 | 6.89×107 | 6.89×107 | 6.89×107 |
泊松比υ | 0.22 | 0.22 | 0.22 | 0.22 |
恢复系数e | 0.926 | 0.926 | 0.926 | 0.926 |
摩擦系数λs | 0.092 | 0.092 | 0.092 | 0.092 |
滚动摩擦系数λr | 0.1 | 0.1 | 0.1 | 0.1 |
操作参数 | ||||
质量流率G/(kg/s) | 3.92×10-4 | 3.92×10-4 | 3.92×10-4 | 3.92×10-4 |
持续时间t/s | 2.0 | 1.0 | 1.0 | 1.5 |
混合物厚度δ/mm | 1.6 | 1.0 | 1.0 | 1.3 |
1 | Bhalode P, Ierapetritou M. A review of existing mixing indices in solid-based continuous blending operations[J]. Powder Technology, 2020, 373: 195-209. |
2 | Gao Y J, Muzzio F J, Ierapetritou M G. Optimizing continuous powder mixing processes using periodic section modeling[J]. Chemical Engineering Science, 2012, 80: 70-80. |
3 | Markeev V B, Blynskaya E V, Tishkov S V, et al. Application of mixing indices in modeling processes in pharmaceutical production[J]. Pharmaceutical Chemistry Journal, 2023, 57(3): 430-440. |
4 | Jadidi B, Ebrahimi M, Ein-Mozaffari F, et al. Investigation of impacts of particle shape on mixing in a twin paddle blender using GPU-based DEM and experiments[J]. Powder Technology, 2023, 417: 118259. |
5 | Bao M, Lin J M, Zhang F, et al. Discrete element method study of parameter optimization and particle mixing behaviour in a soil mixer[J]. Particuology, 2023, 81: 1-14. |
6 | Lacey P M C. Developments in the theory of particle mixing[J]. Journal of Applied Chemistry, 1954, 4(5): 257-268. |
7 | Siiriä S, Yliruusi J. Determining a value for mixing: mixing degree[J]. Powder Technology, 2009, 196(3): 309-317. |
8 | Deen N G, Willem G, Sander G, et al. Numerical analysis of solids mixing in pressurized fluidized beds[J]. Industrial & Engineering Chemistry Research, 2010, 49(11): 5246-5253. |
9 | Chen M, Liu M L, Li T J, et al. A novel mixing index and its application in particle mixing behavior study in multiple-spouted bed[J]. Powder Technology, 2018, 339: 167-181. |
10 | Chandratilleke G R, Yu A B, Bridgwater J, et al. A particle-scale index in the quantification of mixing of particles[J]. AIChE Journal, 2012, 58(4): 1099-1118. |
11 | Tan Y, Dahlenburg M, Fottner J, et al. Influencing factors of the mixing performance of a near-nozzle continuous mixer for 3D concrete printing: an analysis based on spatial Lacey mixing index (SLMI)[J]. Powder Technology, 2022, 403: 117414. |
12 | Li S, Kajiwara S, Sakai M. Numerical investigation on the mixing mechanism in a cross-torus paddle mixer using the DEM-CFD method[J]. Powder Technology, 2021, 377: 89-102. |
13 | Mori Y, Sakai M. Advanced DEM simulation on powder mixing for ellipsoidal particles in an industrial mixer[J]. Chemical Engineering Journal, 2022, 429: 132415. |
14 | Gao W, Liu L, Liao Z C, et al. Discrete element analysis of the particle mixing performance in a ribbon mixer with a double U-shaped vessel[J]. Granular Matter, 2019, 21(1): 12. |
15 | Jin X, Chandratilleke G, Wang S, et al. DEM investigation of mixing indices in a ribbon mixer[J]. Particuology, 2022, 60(1): 37-47. |
16 | Jiang M Q, Zhao Y Z, Liu G S, et al. Enhancing mixing of particles by baffles in a rotating drum mixer[J]. Particuology, 2011, 9(3): 270-278. |
17 | Jiang S Q, Ye Y X, He M X, et al. Mixing uniformity of irregular sand and gravel materials in a rotating drum with determination of contact model parameters[J]. Powder Technology, 2019, 354: 377-391. |
18 | Liu P Y, Yang R Y, Yu A B. DEM study of the transverse mixing of wet particles in rotating drums[J]. Chemical Engineering Science, 2013, 86: 99-107. |
19 | Ji S, Wang S, Zhou Z. Influence of particle shape on mixing rate in rotating drums based on super-quadric DEM simulations[J]. Advanced Powder Technology, 2020, 31(8): 3540-3550. |
20 | Huang A N, Kuo H P. A study of the three-dimensional particle size segregation structure in a rotating drum[J]. AIChE Journal, 2012, 58(4): 1076-1083. |
21 | Yang S L, Wang H, Wei Y G, et al. Segregation behavior of binary mixtures of cylindrical particles with different length ratios in the rotating drum[J]. AIChE Journal, 2020, 66(1): e16799. |
22 | 孙撼林, 方海峰, 刘锐, 等. 工装篮烘干筒内硅料颗粒混合过程的数值模拟[J]. 中国粉体技术, 2023, 29(4): 22-35. |
Sun H L, Fang H F, Liu R, et al. Numerical simulation of mixing process of silicon particles in drying cylinder of tooling basket[J]. China Powder Science and Technology, 2023, 29(4): 22-35. | |
23 | Yue Y H, Wang S, Shen Y S. Gas-solid mixing and heat transfer performance in alternating spout deflection[J]. Chemical Engineering Science, 2021, 234: 116446. |
24 | Xie Z Z, Gu X Y, Shen Y S. A machine learning study of predicting mixing and segregation behaviors in a bidisperse solid-liquid fluidized bed[J]. Industrial & Engineering Chemistry Research, 2022, 61(24): 8551-8565. |
25 | Liu R J, Zhou Z Y, Xiao R, et al. CFD-DEM modelling of mixing of granular materials in multiple jets fluidized beds[J]. Powder Technology, 2020, 361: 315-325. |
26 | Hoorijani H, Esgandari B, Zarghami R, et al. Comparative CFD-DEM study of flow regimes in spout-fluid beds[J]. Particuology, 2024, 85: 323-334. |
27 | Feng D L, Li H, Zhu M Y, et al. Insight into the interaction mechanism between liquid action and cone structure in liquid-containing gas-solid spouted fluidized bed reactors[J]. Powder Technology, 2022, 408: 117693. |
28 | 朱润孺, 朱卫兵, 邢力超, 等. 矩形喷动床混合特性的三维数值研究[J]. 中国电机工程学报, 2010, 30(17): 12-16. |
Zhu R R, Zhu W B, Xing L C, et al. A three-dimensional numerical investigation on particle mixing characteristics in rectangular spouted beds[J]. Proceedings of the CSEE, 2010, 30(17): 12-16. | |
29 | 张俊强, 纪律, 李斌, 等. 单孔射流流化床内颗粒混合特性的数值模拟[J]. 化工学报, 2017, 68(3): 879-888. |
Zhang J Q, Ji L, Li B, et al. Numerical simulation of particle mixing in single jet fluidized bed[J]. CIESC Journal, 2017, 68(3): 879-888. | |
30 | Zhu C, Qin B T, Lu Y, et al. A novel mixer with a hollow spiral structure for preparing inorganic solidified foam[J]. Journal of Chemical Engineering of Japan, 2016, 49(6): 503-510. |
31 | Pezo L, Jovanović A, Pezo M, et al. Modified screw conveyor-mixers — discrete element modeling approach[J]. Advanced Powder Technology, 2015, 26(5): 1391-1399. |
32 | Vanarase A U, Osorio J G, Muzzio F J. Effects of powder flow properties and shear environment on the performance of continuous mixing of pharmaceutical powders[J]. Powder Technology, 2013, 246: 63-72. |
33 | Yuan Q C, Xu L M, Ma S, et al. The effect of paddle configurations on particle mixing in a soil-fertilizer continuous mixing device[J]. Powder Technology, 2021, 391: 292-300. |
34 | Govender N, Wilke D N, Wu C Y, et al. Large-scale GPU based DEM modeling of mixing using irregularly shaped particles[J]. Advanced Powder Technology, 2018, 29(10): 2476-2490. |
35 | Yu F H, Yao Z H, Chen G J, et al. DEM simulations of tote blenders for enhanced axial mixing efficiency[J]. Particuology, 2021, 55: 199-208. |
36 | 王龙, 胡灿, 贺小伟, 等. 基于离散元法立式饲料搅拌机混合过程的模拟[J]. 饲料工业, 2020, 41(3): 6-10. |
Wang L, Hu C, He X W, et al. Simulation of mixing process in vertical feed mixer based on discrete element method[J]. Feed Industry, 2020, 41(3): 6-10. | |
37 | Alian M, Ein-Mozaffari F, Upreti S R, et al. Using discrete element method to analyze the mixing of the solid particles in a slant cone mixer[J]. Chemical Engineering Research and Design, 2015, 93: 318-329. |
38 | Zhang Z W, Gui N, Ge L, et al. Numerical study of particle mixing in a tilted three-dimensional tumbler and a new particle-size mixing index[J]. Advanced Powder Technology, 2019, 30(10): 2338-2351. |
39 | Norouzi H R, Zarghami R, Sotudeh-Gharebagh R, et al. Coupled CFD-DEM Modeling[M]. Hoboken: Wiley, 2016. |
40 | Strobl S, Formella A, Pöschel T. Exact calculation of the overlap volume of spheres and mesh elements[J]. Journal of Computational Physics, 2016, 311: 158-172. |
41 | Goniva C, Kloss C, Deen N G, et al. Influence of rolling friction on single spout fluidized bed simulation[J]. Particuology, 2012, 10(5): 582-591. |
42 | Snider D M. An incompressible three-dimensional multiphase particle-in-cell model for dense particle flows[J]. Journal of Computational Physics, 2001, 170(2): 523-549. |
43 | Cundall P A, Strack O D L. A discrete numerical model for granular assemblies[J]. Géotechnique, 1979, 29(1): 47-65. |
44 | 刘凯欣, 高凌天. 离散元法研究的评述[J]. 力学进展, 2003, 33(4): 483-490. |
Liu K X, Gao L T. A review on the discrete element method[J]. Advances in Mechanics, 2003, 33(4): 483-490. | |
45 | 周先齐, 徐卫亚, 钮新强, 等. 离散单元法研究进展及应用综述[J]. 岩土力学, 2007, 28(S1): 408-416. |
Zhou X Q, Xu W Y, Niu X Q, et al. A review of distinct element method researching progress and application[J]. Rock and Soil Mechanics, 2007, 28(S1): 408-416. | |
46 | Xu J, Zhao P, Zhang Y, et al. Discrete particle methods for engineering simulation: reproducing mesoscale structures in multiphase systems[J]. Resources Chemicals and Materials, 2022, 1(1): 69-79. |
47 | Xu J, Qi H, Fang X, et al. Quasi-real-time simulation of rotating drum using discrete element method with parallel GPU computing[J]. Particuology, 2011, 9(4): 446-450. |
48 | 张雪宽, 徐骥, 孙俊杰, 等. 竖冷设备中烧结矿石偏析行为的GPU高性能模拟[J]. 力学学报, 2019, 51(1): 64-73. |
Zhang X K, Xu J, Sun J J, et al. Segregation behavior of sinter in vertically arranged cooler with hige performance GPU simulation[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 64-73. | |
49 | 徐骥, 葛蔚, 王利民, 等. 多尺度离散模拟在钢铁行业技术研发中的应用[J]. 过程工程学报, 2022, 22(10): 1308-1316. |
Xu J, Ge W, Wang L M, et al. Multiscale discrete particle simulation for iron and steel industry: progress and prospect[J]. The Chinese Journal of Process Engineering, 2022, 22(10): 1308-1316. | |
50 | Alhijjaj M, Yassin S, Reading M, et al. Characterization of heterogeneity and spatial distribution of phases in complex solid dispersions by thermal analysis by structural characterization and X-ray micro computed tomography[J]. Pharmaceutical Research, 2017, 34(5): 971-989. |
[1] | 苏彬, 董浩伟, 罗振敏, 邓军, 王涛, 程方明. 气粉两相体系爆炸动力学特性及机理研究进展[J]. 化工学报, 2024, 75(6): 2109-2122. |
[2] | 卢飞, 鲁波娜, 许光文. 气固微型流化床反应分析仪的理想流型判据分析[J]. 化工学报, 2024, 75(6): 2201-2213. |
[3] | 黎宏陶, 王振雷, 王昕. 基于即时学习的改进条件高斯回归软测量[J]. 化工学报, 2024, 75(6): 2299-2312. |
[4] | 李宁, 朱朋飞, 张立峰, 卢栋臣. 基于非凸与不可分离正则化算法的电容层析成像图像重建[J]. 化工学报, 2024, 75(3): 836-846. |
[5] | 谷世良, 谭博仁, 程全中, 姚玮洁, 董志鹏, 许峰, 王勇. 轴流泵式混合室内水力学特征的数值模拟[J]. 化工学报, 2024, 75(3): 815-822. |
[6] | 徐百平, 梁瑞凤, 喻慧文, 吴桂群, 肖书平. 双螺杆挤出机强化三角形转子作用下的腔内分布混合模拟[J]. 化工学报, 2024, 75(3): 858-866. |
[7] | 李乃良, 刘常松, 杜雪平, 张一帆, 韩东太. 基于Hurst指数的严重段塞流多尺度分形特性[J]. 化工学报, 2024, 75(2): 484-492. |
[8] | 詹小斌, 王会彬, 蒋亚龙, 史铁林. 声共振混合器高黏度流体混合的功耗特性研究[J]. 化工学报, 2024, 75(2): 531-542. |
[9] | 王林, 江荣鼎, 张春晓, 李修真, 谈莹莹. 含R1234yf混合工质汽液相平衡的混合规则评估与预测研究[J]. 化工学报, 2024, 75(2): 475-483. |
[10] | 孙瑞, 田华, 吴子睿, 孙孝存, 舒歌群. 二氧化碳混合工质临界参数计算模型对比研究[J]. 化工学报, 2024, 75(2): 439-449. |
[11] | 吴凡, 彭旭东, 江锦波, 孟祥铠, 梁杨杨. 分子动力学模拟预测天然气密度和黏度的可行性研究[J]. 化工学报, 2024, 75(2): 450-462. |
[12] | 王俊男, 何呈祥, 王忠东, 朱春英, 马友光, 付涛涛. T型微混合器内均相混合的数值模拟[J]. 化工学报, 2024, 75(1): 242-254. |
[13] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[14] | 谈莹莹, 刘晓庆, 王林, 黄鲤生, 李修真, 王占伟. R1150/R600a自复叠制冷循环开机动态特性实验研究[J]. 化工学报, 2023, 74(S1): 213-222. |
[15] | 程小松, 殷勇高, 车春文. 不同工质在溶液除湿真空再生系统中的性能对比[J]. 化工学报, 2023, 74(8): 3494-3501. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 522
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 269
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||