化工学报 ›› 2024, Vol. 75 ›› Issue (S1): 206-216.DOI: 10.11949/0438-1157.20240413
郭骐瑞(), 任丽媛, 陈康, 黄翔宇, 马卫华(
), 肖乐勤, 周伟良
收稿日期:
2024-04-15
修回日期:
2024-05-26
出版日期:
2024-12-25
发布日期:
2024-12-17
通讯作者:
马卫华
作者简介:
郭骐瑞(2000—),男,硕士研究生,guoqirui@njust.edu.cn
基金资助:
Qirui GUO(), Liyuan REN, Kang CHEN, Xiangyu HUANG, Weihua MA(
), Leqin XIAO, Weiliang ZHOU
Received:
2024-04-15
Revised:
2024-05-26
Online:
2024-12-25
Published:
2024-12-17
Contact:
Weihua MA
摘要:
端羟基聚丁二烯(HTPB)推进剂中固化剂和黏合剂的充分混合对推进剂性能至关重要,SK型静态混合管能实现高黏度流体的充分混合。采用Minilab微型双螺杆流变仪测量了推进剂浆料的黏切曲线。通过计算流体力学对应用于HTPB推进剂药浆的SK型静态混合管进行了数值模拟,分析了SK型静态混合管的入口流速、元件个数和元件长径比与压降和混合效果之间的关系。数值模拟表明,压降与入口流速成正比,与元件个数线性相关,45%以上的阻力损失都集中在混合管用于挤出成型的出口喷嘴处。8个混合单元可完成99.9%的混合,12个混合单元可完成99.99%的混合。长径比减小时,径向上的二次流加剧。长径比从0.5增加到1.25,可以在加强混合的同时降低能耗。
中图分类号:
郭骐瑞, 任丽媛, 陈康, 黄翔宇, 马卫华, 肖乐勤, 周伟良. 用于HTPB推进剂浆料的静态混合管数值模拟[J]. 化工学报, 2024, 75(S1): 206-216.
Qirui GUO, Liyuan REN, Kang CHEN, Xiangyu HUANG, Weihua MA, Leqin XIAO, Weiliang ZHOU. Numerical simulation of static mixing tubes for HTPB propellant slurry[J]. CIESC Journal, 2024, 75(S1): 206-216.
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
元件扭转角θ | ±180° | 混合管管径D | 6.4 mm |
元件直径D | 6.4 mm | 元件个数 | 4~16 |
元件长度L | 3.2~11.8 mm | 元件连接距离s | 0.8 mm |
长径比L/D | 0.5~2.0 | 出口管径d | 1.28 mm |
元件厚度W | 0.64 mm | 出口长度l | 17 mm |
表1 静态混合管的几何参数
Table 1 Geometrical parameters of static mixing tube
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
元件扭转角θ | ±180° | 混合管管径D | 6.4 mm |
元件直径D | 6.4 mm | 元件个数 | 4~16 |
元件长度L | 3.2~11.8 mm | 元件连接距离s | 0.8 mm |
长径比L/D | 0.5~2.0 | 出口管径d | 1.28 mm |
元件厚度W | 0.64 mm | 出口长度l | 17 mm |
组成 | 质量分数 | ||
---|---|---|---|
组分甲 | 组分乙 | ||
黏合剂 | 预聚体 | 13.3% | — |
HTPB | — | 10.1% | |
增塑剂 | DOS | 3.7% | 3.9% |
氧化剂 | K2SO4 | 65% | 12.6% |
CaCO3 | — | 12.6% | |
燃烧剂 | Al | 18% | 60.9% |
表2 药浆组分配方
Table 2 Formulation of slurry components
组成 | 质量分数 | ||
---|---|---|---|
组分甲 | 组分乙 | ||
黏合剂 | 预聚体 | 13.3% | — |
HTPB | — | 10.1% | |
增塑剂 | DOS | 3.7% | 3.9% |
氧化剂 | K2SO4 | 65% | 12.6% |
CaCO3 | — | 12.6% | |
燃烧剂 | Al | 18% | 60.9% |
组分 | 剪切速率/s-1 | 黏切曲线 | R2 |
---|---|---|---|
甲 | 40~400 | 0.9896 | |
乙 | 30~63 | 0.9811 | |
63~110 | 0.9814 | ||
110~600 | 0.9986 |
表3 入口组分的黏度拟合结果
Table 3 Viscosity fitting results of inlet components
组分 | 剪切速率/s-1 | 黏切曲线 | R2 |
---|---|---|---|
甲 | 40~400 | 0.9896 | |
乙 | 30~63 | 0.9811 | |
63~110 | 0.9814 | ||
110~600 | 0.9986 |
部件 | 压降/kPa |
---|---|
入口结构 | 16.095±0.007 |
第一个混合单元 | 41.615±0.103 |
第二个混合单元 | 49.845±0.058 |
第三个混合单元 | 51.281±0.052 |
其他的混合单元 | 50.630±0.138 |
最后一个混合单元 | 48.006±0.183 |
出口结构 | 690.27±0.152 |
表4 SK型静态混合管不同区域的压降
Table 4 Pressure drop in different regions of kenics static mixing tube
部件 | 压降/kPa |
---|---|
入口结构 | 16.095±0.007 |
第一个混合单元 | 41.615±0.103 |
第二个混合单元 | 49.845±0.058 |
第三个混合单元 | 51.281±0.052 |
其他的混合单元 | 50.630±0.138 |
最后一个混合单元 | 48.006±0.183 |
出口结构 | 690.27±0.152 |
L/D | 平均黏度/(Pa·s) | ||
---|---|---|---|
组分甲 | 组分乙 | 混合物 | |
0.5 | 322.48 | 26.35 | 174.59 |
1.25 | 335.36 | 18.27 | 176.93 |
2 | 337.98 | 16.53 | 177.32 |
表5 不同长径比第6个混合元件中间截面的平均黏度
Table 5 Average viscosity at the middle section of the 6th mixing element with different L/D ratios
L/D | 平均黏度/(Pa·s) | ||
---|---|---|---|
组分甲 | 组分乙 | 混合物 | |
0.5 | 322.48 | 26.35 | 174.59 |
1.25 | 335.36 | 18.27 | 176.93 |
2 | 337.98 | 16.53 | 177.32 |
1 | Cheng T Z. Review of novel energetic polymers and binders: high energy propellant ingredients for the new space race[J]. Designed Monomers and Polymers, 2019, 22(1): 54-65. |
2 | Zhang H N, Liu M, Miao Y G, et al. Dynamic mechanical response and damage mechanism of HTPB propellant under impact loading[J]. Materials, 2020, 13(13): 3031. |
3 | 王新德, 张捷, 刘艳艳, 等. IPDI与HTPB反应动力学傅里叶红外研究[J]. 化学推进剂与高分子材料, 2011, 9(6): 64-68, 72. |
Wang X D, Zhang J, Liu Y Y, et al. Researches on IPDI and HTPB reaction kinetics by foruier transform infrared spectrum[J]. Chemical Propellants & Polymeric Materials, 2011, 9(6): 64-68, 72. | |
4 | Zalewski K, Chyłek Z, Trzciński W A. Rheokinetic studies on the curing process of energetic systems containing RDX, HTPB with high content of 1,2-vinyl groups and hydantoin-based bonding agent[J]. Polymer Testing, 2022, 111: 107611. |
5 | 尹华丽, 李东峰, 张纲要. IPDI型HTPB推进剂界面软化因素研究[J]. 固体火箭技术, 2005, 28(1): 44-48. |
Yin H L, Li D F, Zhang G Y. Study on the interface softening factors of HTPB-IPDI propellant[J]. Journal of Solid Rocket Technology, 2005, 28(1): 44-48. | |
6 | 陈西锋, 陈晔. 传统SK型与新型静态混合器的结构优化[J]. 现代纺织技术, 2023, 31(3): 1-11. |
Chen X F, Chen Y. Structure optimization of traditional SK type and new static mixers[J]. Advanced Textile Technology, 2023, 31(3): 1-11. | |
7 | 中华人民共和国工业和信息化部. 静态混合器: [S]. 北京: 机械工业出版社, 2016. |
Ministry of Industry and Information Technology of the People's Republic of China. Static mixer: [S]. Beijing: Machinery Industry Press, 2016. | |
8 | Cao Q, Zhou J F, Qian Y, et al. Three-dimensional model on liquid-liquid mass transfer of the kenics static mixer: considering dynamic droplet size distribution[J]. Industrial & Engineering Chemistry Research, 2023, 62(27): 10507-10522. |
9 | 张春梅. SK型静态混合器流动特性研究[D]. 天津: 天津大学, 2009. |
Zhang C M. Study on flow characteristics in SK static mixer[D]. Tianjin: Tianjin University, 2009. | |
10 | Jiang X R, Xiao Z D, Jiang J N, et al. Effect of element thickness on the pressure drop in the kenics static mixer[J]. Chemical Engineering Journal, 2021, 424: 130399. |
11 | Chen G H, Liu Z L. Numerical research of pressure drop in kenics static mixer[J]. Advanced Materials Research, 2013, 694/695/696/697: 547-550. |
12 | Mahmoodi H, Razzaghi K, Shahraki F. Improving mixing performance by curved‐blade static mixer[J]. AIChE Journal, 2020, 66(11): e17034. |
13 | Bennour E, Kezrane C, Kaid N, et al. Improving mixing efficiency in laminar-flow static mixers with baffle inserts and vortex generators: a three-dimensional numerical investigation using corrugated tubes[J]. Chemical Engineering and Processing - Process Intensification, 2023, 193: 109530. |
14 | Aanjaneya K, Agrawal S. Optimization of twisted-tape element static mixers for industrially relevant setups[J]. Chemical Engineering Research and Design, 2023, 191: 426-438. |
15 | Ujhidy A, Németh J, Szépvölgyi J. Fluid flow in tubes with helical elements[J]. Chemical Engineering and Processing: Process Intensification, 2003, 42(1): 1-7. |
16 | Yan Z, Li X L, Yu C P, et al. Dual channels of helicity cascade in turbulent flows[J]. Journal of Fluid Mechanics, 2020, 894: R2. |
17 | Yu C P, Hu R N, Yan Z, et al. Helicity distributions and transfer in turbulent channel flows with streamwise rotation[J]. Journal of Fluid Mechanics, 2022, 940: A18. |
18 | Ramsay J, Simmons M J H, Ingram A, et al. Mixing performance of viscoelastic fluids in a kenics KM in-line static mixer[J]. Chemical Engineering Research and Design, 2016, 115: 310-324. |
19 | Mihailova O, O'Sullivan D, Ingram A, et al. Velocity field characterization of Newtonian and non-Newtonian fluids in SMX mixers using PEPT[J]. Chemical Engineering Research and Design, 2016, 108: 126-138. |
20 | Tao Y X, Mohan M K, Rahul A V, et al. Influence of rheology on mixing homogeneity and mechanical behavior of twin-pipe 3D printable concrete[J]. Construction and Building Materials, 2023, 408: 133694. |
21 | 成文凯, 张先明, 王嘉骏, 等. 卧式单轴捏合反应器流动与混合特性的数值模拟[J]. 化工学报, 2022, 73(5): 1995-2007. |
Cheng W K, Zhang X M, Wang J J, et al. Numerical simulation of hydrodynamics and mixing characteristics in a horizontal single-shaft kneader[J]. CIESC Journal, 2022, 73(5): 1995-2007. | |
22 | Moghaddam S. Effect of non-Newtonian fluid on mixing quality and pressure drop in several static mixers: a numerical study[J]. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 2023, 47(4): 1585-1597. |
23 | 赵月, 马建平, 陈世昌, 等. Kenics型静态混合器的结构优化与数值模拟[J]. 合成纤维工业, 2019, 42(2): 74-80. |
Zhao Y, Ma J P, Chen S C, et al. Numerical simulation and structure optimization of Kenics static mixers[J]. China Synthetic Fiber Industry, 2019, 42(2): 74-80. | |
24 | 马秀清, 金日光. 高聚物流变学[M]. 上海: 华东理工大学出版社, 2012. |
Ma X Q, Jin R G. Polymer Rheology[M]. Shanghai: East China University of Science and Technology Press, 2012. | |
25 | 胡秀丽, 周伟良, 肖乐勤, 等. 硼及其团聚颗粒在HTPB中流变性能研究[J]. 固体火箭技术, 2014, 37(3): 369-375. |
Hu X L, Zhou W L, Xiao L Q, et al. Effect of boron powder and agglomerated boron particles on the rheological property of HTPB[J]. Journal of Solid Rocket Technology, 2014, 37(3): 369-375. | |
26 | 岳彩军, 寿亦萱, 寿绍文, 等. 我国螺旋度的研究及应用[J]. 高原气象, 2006, 25(4): 754-762. |
Yue C J, Shou Y X, Shou S W, et al. Research and application on helicity in China[J]. Plateau Meteorology, 2006, 25(4): 754-762. | |
27 | 刘超群. Liutex-涡定义和第三代涡识别方法[J]. 空气动力学学报, 2020, 38(3): 413-431, 478. |
Liu C Q. Liutex-third generation of vortex definition and identification methods[J]. Acta Aerodynamica Sinica, 2020, 38(3): 413-431, 478. | |
28 | Potsdam M, Wissink A, Kamkar S, et al. CFD adaptive mesh refinement for rotorcraft wake simulations[C]//37th European Rotorcraft Forum. Italy, 2011. |
29 | Ren X T, Guo Y L, Shen S Q, et al. Large eddy simulation of flow field in thermal vapor compressor[J]. Frontiers in Energy Research, 2022, 10: 1008927. |
30 | Wadley R, Dawson M K. LIF measurements of blending in static mixers in the turbulent and transitional flow regimes[J]. Chemical Engineering Science, 2005, 60(8/9): 2469-2478. |
31 | Hobbs D M, Swanson P D, Muzzio F J. Numerical characterization of low Reynolds number flow in the kenics static mixer[J]. Chemical Engineering Science, 1998, 53(8): 1565-1584. |
[1] | 董新宇, 边龙飞, 杨怡怡, 张宇轩, 刘璐, 王腾. 冷却条件下倾斜上升管S-CO2流动与传热特性研究[J]. 化工学报, 2024, 75(S1): 195-205. |
[2] | 李匡奚, 于佩潜, 王江云, 魏浩然, 郑志刚, 冯留海. 微气泡旋流气浮装置内流动分析与结构优化[J]. 化工学报, 2024, 75(S1): 223-234. |
[3] | 谢慧慧, 姜佳鑫, 王鑫, 李正, 郭鑫, 吕欣然, 王凌云, 刘杨. 深共晶溶剂聚合物包覆膜传输分离铂、钯的研究[J]. 化工学报, 2024, 75(S1): 235-243. |
[4] | 汪张洲, 唐天琪, 夏嘉俊, 何玉荣. 基于复合相变材料的电池热管理性能模拟[J]. 化工学报, 2024, 75(S1): 329-338. |
[5] | 胡俭, 姜静华, 范生军, 刘建浩, 邹海江, 蔡皖龙, 王沣浩. 中深层U型地埋管换热器取热特性研究[J]. 化工学报, 2024, 75(S1): 76-84. |
[6] | 任冠宇, 张义飞, 李新泽, 杜文静. 翼型印刷电路板式换热器流动传热特性数值研究[J]. 化工学报, 2024, 75(S1): 108-117. |
[7] | 杨勇, 祖子轩, 李煜坤, 王东亮, 范宗良, 周怀荣. T型圆柱形微通道内CO2碱液吸收数值模拟[J]. 化工学报, 2024, 75(S1): 135-142. |
[8] | 孙娜娜, 董红妹, 郭文豪, 柳健, 胡建波, 靳爽. 改性磁性纳米粒子稳定的稠油O/W型乳状液的流变性影响因素及管输压降预测模型[J]. 化工学报, 2024, 75(S1): 143-157. |
[9] | 黄俊豪, 庞克亮, 孙方远, 刘福军, 谷致远, 韩龙, 段衍泉, 冯妍卉. 干熄炉料钟结构对焦炭布料粒径均匀度影响的模拟研究[J]. 化工学报, 2024, 75(S1): 158-169. |
[10] | 祝赫, 张仪, 齐娜娜, 张锴. 欧拉-欧拉双流体模型中颗粒黏性对液固散式流态化的影响[J]. 化工学报, 2024, 75(9): 3103-3112. |
[11] | 陈巨辉, 苏潼, 李丹, 陈立伟, 吕文生, 孟凡奇. 翅形扰流片作用下的微通道换热特性[J]. 化工学报, 2024, 75(9): 3122-3132. |
[12] | 李舒月, 王欢, 周少强, 毛志宏, 张永民, 王军武, 吴秀花. 基于CPFD方法的U3O8氢还原流化床反应器数值模拟[J]. 化工学报, 2024, 75(9): 3133-3151. |
[13] | 钱啸宇, 阮璇, 李水清. 外加电场下电介质颗粒层结构重构与悬浮[J]. 化工学报, 2024, 75(8): 2756-2762. |
[14] | 朱子良, 王爽, 姜宇昂, 林梅, 王秋旺. 欧拉-拉格朗日迭代固-液相变算法[J]. 化工学报, 2024, 75(8): 2763-2776. |
[15] | 邓爱明, 何玉荣, 唐天琪, 胡彦伟. 导流板对喷雾流化床内颗粒生长过程影响的模拟[J]. 化工学报, 2024, 75(8): 2787-2799. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 96
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 62
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||