化工学报 ›› 2025, Vol. 76 ›› Issue (7): 3172-3184.DOI: 10.11949/0438-1157.20241452

• 综述与专论 • 上一篇    下一篇

模板限域原位制备镁基纳米复合材料进展

王佳丽1,2(), 刘芳1,2, 陈伟1,3(), 张晓英4, 李生廷4, 田甜2, 信翔宇2, 刘光2(), 宋宇飞1,3()   

  1. 1.北京化工大学化工资源有效利用国家重点实验室,北京 100029
    2.太原理工大学化学与化工学院,气体能源 高效清洁利用山西省重点实验室,山西 太原 030024
    3.衢州资源化工创新研究院,浙江 衢州 324003
    4.青海盐湖工业股份有限公司,青海 格尔木 816000
  • 收稿日期:2024-12-16 修回日期:2025-02-17 出版日期:2025-07-25 发布日期:2025-08-13
  • 通讯作者: 陈伟,刘光,宋宇飞
  • 作者简介:王佳丽(2001—),女,硕士研究生,wangjl0130@163.com
  • 基金资助:
    青海盐湖工业股份有限公司技术开发项目(NZ-H202302118)

Recent advances in magnesium-based nanocomposites via in-situ template-confined synthesis

Jiali WANG1,2(), Fang LIU1,2, Wei CHEN1,3(), Xiaoying ZHANG4, Shengting LI4, Tian TIAN2, Xiangyu XIN2, Guang LIU2(), Yufei SONG1,3()   

  1. 1.State Key Laboratory of Chemical Resource Engineering,Beijing University of Chemical Technology,Beijing 100029, China
    2.Shanxi Key Laboratory of Gas Energy E?cient and Clean Utilization,College of Chemistry and Chemical Engineering,Taiyuan University of Technology,Taiyuan 030024,Shanxi,China
    3.Quzhou Institute for Innovation in Resource Chemical Engineering,Quzhou 324003, Zhejiang,China
    4.Qinghai Salt Lake Industrial Co. ,Ltd. ,Golmud 816000,Qinghai,China
  • Received:2024-12-16 Revised:2025-02-17 Online:2025-07-25 Published:2025-08-13
  • Contact: Wei CHEN, Guang LIU, Yufei SONG

摘要:

MgH2作为一种具有高储氢容量[(7.6%(质量分数),110 kg·m-3]和低成本优势的固态储氢材料,其高热力学稳定性(脱氢焓值-74.7 kJ·mol-1)及缓慢的吸放氢动力学性能,严重制约了实际应用。研究表明,原位合成法通过自下而上的组装策略,成功实现了Mg/MgH2体系纳米化,有效调控其粒径从而改善储氢性能。本文综述了化学还原、热氢化、气相沉积等原位合成镁基储氢材料的原理,重点阐述了模板限制材料对Mg/MgH2体系粒径调节、吸放氢热/动力学性能与催化机理的影响,同时针对当前原位合成技术中存在的制备成本高、容量衰减大及空气稳定性差等挑战进行了探讨,展望了在纳米限域材料作用下原位制备高性能高储量镁基储氢材料的可行方向。

关键词: 氢化镁, 固态储氢, 纳米限域材料, 解吸, 热力学

Abstract:

Magnesium hydride (MgH2) is a promising solid-state hydrogen storage material due to its high hydrogen storage capacity (7.6%(mass), 110 kg·m-3) and low cost. However, its practical application is hindered by its high thermodynamic stability (enthalpy: -74.7 kJ·mol-1) and slow hydrogen absorption/desorption kinetics. Studies have shown that the in-situ synthesis method successfully achieved the nano-sizing of the Mg/MgH2 system through a bottom-up assembly strategy, effectively regulating its particle size to improve hydrogen storage performance. This paper reviews the principles behind in-situ synthesis for Mg-based hydrogen storage materials, with a particular focus on methods such as chemical reduction, thermal hydrogenation, and chemical vapour deposition. It also explores how template-confined materials influence the regulation of particle size, hydrogen absorption/desorption kinetics, and the catalytic mechanisms within the Mg/MgH2 system. Simultaneously, the current challenges in in-situ synthesis techniques are discussed, including high production costs, capacity loss, and poor air stability, while proposing promising strategies for developing high-performance and high-capacity magnesium-based hydrogen storage materials through nanoconfined in-situ fabrication approaches.

Key words: magnesium hydride (MgH2), solid hydrogen storage, nanoconfined material, desorption, thermodynamics

中图分类号: