• •
刘峰1(), 韩春硕1, 张益1(
), 刘彦成2(
), 郁林军3, 申家伟1, 高晓泉1, 杨凯1
收稿日期:
2024-10-29
修回日期:
2025-01-02
出版日期:
2025-01-03
通讯作者:
张益,刘彦成
作者简介:
刘峰(1984—),男,博士,副教授,xsyuliufeng@163.com
基金资助:
Feng LIU1(), Chunshuo HAN1, Yi ZHANG1(
), Yancheng LIU2(
), Linjun YU3, Jiawei SHEN1, Xiaoquan GAO1, Kai YANG1
Received:
2024-10-29
Revised:
2025-01-02
Online:
2025-01-03
Contact:
Yi ZHANG, Yancheng LIU
摘要:
表面活性剂对油水界面性质具有重要影响,高温高盐油藏环境严重影响表面活性剂的界面化学特性和驱油效果。为研究不同表面活性剂结构对油水界面性质的影响。采用分子动力学模拟方法研究了阴离子表面活性剂十二烷基硫酸钠(SDS)和进行基团修饰的表面活性剂SDS-B在油水界面上的微观行为和作用机理。结果表明,在SDS表面活性剂的疏水尾链中引入链烷烃,改变了表面活性剂分子在油水界面的排列方式,相较于单烃链表面活性剂,双烃链结构使表面活性剂在高温高盐环境下依旧能紧密垂直于油水界面,SDS-B具有良好的分子界面行为。同时,链烷烃基团数目的增加导致SDS分子表现出轻微的弯曲,使表面活性剂分子形成多处聚集体,有利于形成多层吸附。SDS-B头基对Ca2+的排斥作用明显强于SDS,径向分布函数第一峰值降低0.89,且SDS-B在Ca2+环境下的油水界面厚度较SDS得到改善,厚度从11.3Å升高到15.2Å,显著增强了界面稳定性,表明烃链的引入提高了表面活性剂的抗Ca2+盐特性。SDS-B头基易与烃链基团形成分子内氢键结构,头基水化能力提高,盐水中的阳离子受到较大的束缚力,Ca2+、Mg2+、Na+扩散系数分别降低了0.027×10-4cm2/s、0.065×10-4cm2/s、0.064×10-4cm2/s。在复杂盐环境及更高离子浓度下SDS-B头基亲水性及界面行为均优于SDS。该研究对三次采油中新型表面活性剂的设计具有重要指导意义。
中图分类号:
刘峰, 韩春硕, 张益, 刘彦成, 郁林军, 申家伟, 高晓泉, 杨凯. 高温高盐环境下单烃链和双烃链表面活性剂对油水界面性质影响的微观机理研究[J]. 化工学报, DOI: 10.11949/0438-1157.20241204.
Feng LIU, Chunshuo HAN, Yi ZHANG, Yancheng LIU, Linjun YU, Jiawei SHEN, Xiaoquan GAO, Kai YANG. Micro-mechanism study on the effect of single and double hydrocarbon chain surfactants on oil-water interface properties under high temperature and high salt reservoir[J]. CIESC Journal, DOI: 10.11949/0438-1157.20241204.
图1 油、水和表面活性剂模型(表面活性剂模型从左到右分别为SDS、以及在SDS基础上进行修饰,尾链加入一个链烷烃,新的表面活性剂命名为SDS-B,彩色球代表不同的元素
Fig.1 Oil, water and surfactant model (the surfactant model is SDS from left to right, and modified on the basis of SDS, and a chain alkane is added to the tail chain. The new surfactant is named SDS-B, and the color ball represents different elements
图2 五种体系初始构型(白色(氢)、灰色(碳)、红色(氧)、黄色(硫)、紫色(钠)、绿色(氯)、粉色(钙)和深蓝色(镁))
Fig. 2 The initial configurations of the four systems ( white ( hydrogen ), gray ( carbon ), red ( oxygen ), yellow ( sulfur ), purple ( sodium ), green ( chlorine ), pink ( calcium ) and dark blue ( magnesium ) ).
体系 | 体系分子/离子个数 | ||||||||
---|---|---|---|---|---|---|---|---|---|
体系1 | SDS | SDS-B | n-Octadecane | H2O | Na+ | Ca2+ | Mg2+ | Cl- | HCO3- |
16 | 0 | 80 | 1600 | 0 | 0 | 0 | 0 | 0 | |
0 | 16 | 80 | 1600 | 0 | 0 | 0 | 0 | 0 | |
0 | 0 | 80 | 1600 | 0 | 0 | 0 | 0 | 0 | |
体系2 | 16 | 0 | 80 | 1600 | 0 | 12 | 0 | 24 | 0 |
0 | 16 | 80 | 1600 | 0 | 12 | 0 | 24 | 0 | |
0 | 0 | 80 | 1600 | 0 | 12 | 0 | 24 | 0 | |
体系3 | 16 | 0 | 80 | 1600 | 0 | 0 | 12 | 24 | 0 |
0 | 16 | 80 | 1600 | 0 | 0 | 12 | 24 | 0 | |
0 | 0 | 80 | 1600 | 0 | 0 | 12 | 24 | 0 | |
体系4 | 16 | 0 | 80 | 1600 | 24 | 0 | 0 | 24 | 0 |
0 | 16 | 80 | 1600 | 24 | 0 | 0 | 24 | 0 | |
0 | 0 | 80 | 1600 | 24 | 0 | 0 | 24 | 0 | |
体系5 | 16 | 0 | 80 | 1600 | 12 | 12 | 12 | 30 | 30 |
0 | 16 | 80 | 1600 | 12 | 12 | 12 | 30 | 30 | |
16 | 0 | 80 | 1600 | 24 | 24 | 24 | 60 | 60 | |
0 | 16 | 80 | 1600 | 24 | 24 | 24 | 60 | 60 |
表1 体系所含分子/离子个数
Table 1 Number of molecules / ions in the system
体系 | 体系分子/离子个数 | ||||||||
---|---|---|---|---|---|---|---|---|---|
体系1 | SDS | SDS-B | n-Octadecane | H2O | Na+ | Ca2+ | Mg2+ | Cl- | HCO3- |
16 | 0 | 80 | 1600 | 0 | 0 | 0 | 0 | 0 | |
0 | 16 | 80 | 1600 | 0 | 0 | 0 | 0 | 0 | |
0 | 0 | 80 | 1600 | 0 | 0 | 0 | 0 | 0 | |
体系2 | 16 | 0 | 80 | 1600 | 0 | 12 | 0 | 24 | 0 |
0 | 16 | 80 | 1600 | 0 | 12 | 0 | 24 | 0 | |
0 | 0 | 80 | 1600 | 0 | 12 | 0 | 24 | 0 | |
体系3 | 16 | 0 | 80 | 1600 | 0 | 0 | 12 | 24 | 0 |
0 | 16 | 80 | 1600 | 0 | 0 | 12 | 24 | 0 | |
0 | 0 | 80 | 1600 | 0 | 0 | 12 | 24 | 0 | |
体系4 | 16 | 0 | 80 | 1600 | 24 | 0 | 0 | 24 | 0 |
0 | 16 | 80 | 1600 | 24 | 0 | 0 | 24 | 0 | |
0 | 0 | 80 | 1600 | 24 | 0 | 0 | 24 | 0 | |
体系5 | 16 | 0 | 80 | 1600 | 12 | 12 | 12 | 30 | 30 |
0 | 16 | 80 | 1600 | 12 | 12 | 12 | 30 | 30 | |
16 | 0 | 80 | 1600 | 24 | 24 | 24 | 60 | 60 | |
0 | 16 | 80 | 1600 | 24 | 24 | 24 | 60 | 60 |
图4 300K下表面活性剂在油水界面的分布形态(a、c、e,g分别代表SDS在纯水体系、含Ca2+体系、含Mg2+体系,含Na+体系的快照;b、d、f,h分别代表SDS-B在纯水体系、含Ca2+体系、含Mg2+体系,含Na+体系的快照)
Fig.4 The distribution of surfactants at the oil-water interface at 300K (a, c, e, g) represents the snapshots of SDS in pure water system, Ca2+-containing system, Mg2+-containing system and Na+ -containing system, respectively. b, d, f, h represent the snapshots of SDS-B in pure water system, Ca2+ system, Mg2+ system and Na+ system, respectively.
图5 390K下表面活性剂在油水界面的分布形态(a、c、e,g分别代表SDS在纯水体系、含Ca2+体系、含Mg2+体系,含Na+体系的快照;b、d、f,h分别代表SDS-B在纯水体系、含Ca2+体系、含Mg2+体系,含Na+体系的快照)
Fig. 5 The distribution of surfactants at the oil-water interface ( a, c, e, g ) at 390 K represents the snapshot of SDS in pure water system, Ca2+ system, Mg2+ system and Na+ system, respectively. b, d, f, h represent the snapshots of SDS-B in pure water system, Ca2+ system, Mg2+ system and Na+ system, respectively.
图6 盐离子密度分布曲线(a-d 为含SDS的盐离子密度分布,从a-d温度分别为300K、330K、360K和390K;e-h为含SDS-B的盐离子密度分布,从e-h温度分别为300K、330K、360K和390K;System2代表Ca2+,System3代表Mg2+,System4代表Na+)
Fig.6 Salt ion density distribution curve (a-d is the salt ion density distribution containing SDS, and the temperature from a-d is 300K, 330K, 360K and 390K, respectively; the e-h is the salt ion density distribution containing SDS-B, and the temperatures from e-h are 300K, 330K, 360K and 390K, respectively. System2 represents Ca2+, System3 represents Mg2+, System4 represents Na+)
图8 不同体系中油水界面构型(a-d为SDS在四种体系中的油水界面分布构型,e-h为SDS-B在四种体系中的油水界面分布构型,分别为纯水体系、含Ca2+体系、含Mg2+体系和含Na+体系。)
Fig.8 Oil-water interface configuration in different systems (a-d is the oil-water interface distribution configuration of SDS in four systems, e-h is the oil-water interface distribution configuration of SDS-B in four systems, which are pure water system, Ca2+ system, Mg2+ system and Na+ system.)
图9 不同体系中表面活性剂头基RDF(a-d为SDS的头基与水分子中的氢的径向分布函数曲线,e-h为SDS-B的头基与水分子中的氢的径向分布函数曲线,温度分别为300K、330K、360K和390K)
Fig.9 Surfactant head group RDF in different systems ( a-d is the radial distribution function curve of SDS head group and hydrogen in water molecules, e-h is the radial distribution function curve of SDS-B head group and hydrogen in water molecules, the temperatures are 300K, 330K, 360K and 390K, respectively ).
Cation type | Cation diffusion coefficient in SDS/(10-4cm2/s) | Cation diffusion coefficient in SDS-B/(10-4cm2/s) |
---|---|---|
Ca2+ | 0.169 | 0.142 |
Mg2+ | 0.127 | 0.062 |
Na+ | 0.276 | 0.212 |
表2 含盐体系中阳离子扩散系数
Table 2 Cation diffusion coefficient in salt system
Cation type | Cation diffusion coefficient in SDS/(10-4cm2/s) | Cation diffusion coefficient in SDS-B/(10-4cm2/s) |
---|---|---|
Ca2+ | 0.169 | 0.142 |
Mg2+ | 0.127 | 0.062 |
Na+ | 0.276 | 0.212 |
图11 SDS和SDS-B在更高浓度钙盐环境下的界面形态分布快照
Fig. 11 Snapshots of interfacial morphology distribution of SDS and SDS-B in higher concentration calcium salt environments
图15 SDS和SDS-B在复杂含盐环境中的油水界面分布快照(a为SDS在低浓度复杂含盐环境下的油水界面快照、b为SDS在高浓度复杂含盐环境下的油水界面快照、c为SDS-B在低浓度复杂含盐环境下的油水界面快照,d为SDS-B在高浓度复杂含盐环境下的油水界面快照)
Fig. 15 Snapshots of oil-water interfacial distribution of SDS and SDS-B in complex saline environments(a is a snapshot of the oil-water interface of SDS in a low concentration complex salt environment, b is a snapshot of the oil-water interface of SDS in a high concentration complex salt environment, c is a snapshot of the oil-water interface of SDS-B in a low concentration complex salt environment, and d is a snapshot of the oil-water interface of SDS-B in a high concentration complex salt environment.)
1 | 姚远, 成萌, 张剑. 分子动力学模拟在表面活性剂界面行为研究中的应用[J]. 化学通报, 2024, 87(10): 1169-1180. |
Yao Y, Cheng M, Zhang J. Application of molecular dynamics simulation in the study of surfactant interface behavior[J]. Chemistry, 2024, 87(10): 1169-1180. | |
2 | Lu N, Dong X H, Liu H Q, et al. Molecular insights into the synergistic mechanisms of hybrid CO2-surfactant thermal systems at heavy oil-water interfaces[J]. Energy, 2024, 286: 129476. |
3 | 王凤娇, 孟详昊, 刘义坤, 等. 致密储层压驱焖井阶段渗吸机理分子模拟研究[J]. 力学学报, 2024, 56(6): 1624-1634. |
Wang F J, Meng X H, Liu Y K, et al. The shut-in imbibition mechanism of hydraulic fracturing-assisted oil displacement in tight reservoirs based on molecular simulation[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(6): 1624-1634. | |
4 | 耿铁, 赵春花, 刘雪婧, 等. 表面活性剂分子在油/水界面聚集行为: 分子模拟研究进展[J]. 日用化学工业, 2019, 49(8): 537-544. |
Geng T, Zhao C H, Liu X J, et al. Molecular simulations for aggregation behavior of surfactant molecules at oil/water interface[J]. China Surfactant Detergent & Cosmetics, 2019, 49(8): 537-544. | |
5 | Xue Z H, Feng Y L, Li H R. Enhancement mechanism of polysorbate surfactant at solid/liquid and gas/liquid interfaces in magnesite tailings flotation desilication via MD and DFT calculations[J]. Journal of Environmental Chemical Engineering, 2024, 12(4): 113085. |
6 | Liu B J M, Lei X T, Ahmadi M, et al. Molecular insights into oil detachment from hydrophobic quartz surfaces in clay-hosted nanopores during steam–surfactant co-injection[J]. Petroleum Science, 2024, 21(4): 2457-2468. |
7 | Schneck E, Reed J, Seki T, et al. Experimental and simulation-based characterization of surfactant adsorption layers at fluid interfaces[J]. Advances in Colloid and Interface Science, 2024, 331: 103237. |
8 | 吕冬梅, 吴慧君, 陈健朋, 等. 分子动力学模拟在分散剂/表面活性剂在煤颗粒表面吸附机理方面的研究进展[J]. 燃料化学学报(中英文), 2024, 52(3): 452-460. |
Lü D M, Wu H J, Chen J P, et al. Research progress of molecular dynamics simulation on adsorption mechanisms of dispersants/surfactants on the surface of coal particles[J]. Journal of Fuel Chemistry and Technology, 2024, 52(3): 452-460. | |
9 | Wang Y D, Li S Y, Zhang Y W, et al. Effect of electric field on coalescence of an oil-in-water emulsion stabilized by surfactant: a molecular dynamics study[J]. RSC Advances, 2022, 12(47): 30658-30669. |
10 | Ren Y, Zhang Q, Yang N, et al. Molecular dynamics simulations of surfactant adsorption at oil/water interface under shear flow[J]. Particuology, 2019, 44: 36-43. |
11 | Zhou L X, Yan Y G, Li S C, et al. Molecular dynamic simulation study on formation of water channel in oil film detachment process controlled by surfactant polarity[J]. Chemical Physics Letters, 2021, 771: 138502. |
12 | Li L, Liu Z. The role of the interface on surfactant transport to crude oil-water liquid-liquid interface[J]. Journal of Molecular Liquids, 2024, 395: 123849. |
13 | Zhou W N, Jiang L, Liu X L, et al. Molecular insights into the effect of anionic-nonionic and cationic surfactant mixtures on interfacial properties of oil-water interface[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 637: 128259. |
14 | Sun X Y, Zeng H B, Tang T. Effect of salinity on water/oil interface with model asphaltene and non-ionic surfactant: Insights from molecular simulations[J]. Fuel, 2023, 339: 126944. |
15 | 吕耀东, 徐娜, 刘子璐. 湍流减阻型聚/表复配体系分子自组装结构及机理的介观分子动力学模拟[J]. 高校化学工程学报, 2022, 36(5): 665-674. |
Lyu Y D, Xu N, Liu Z L. Mesoscopic molecular dynamic simulation on the molecular self-assembly structure and mechanism of the polymer/surfactant compound system using as the turbulent drag-reduction additives[J]. Journal of Chemical Engineering of Chinese Universities, 2022, 36(5): 665-674. | |
16 | Li N, Sun Z Q, Pang Y H, et al. Microscopic mechanism for electrocoalescence of water droplets in water-in-oil emulsions containing surfactant: a molecular dynamics study[J]. Separation and Purification Technology, 2022, 289: 120756. |
17 | Barbosa G D, Manske C L, Tavares F W, et al. A molecular simulation study of ethoxylated surfactant effects on bulk and water/crude-oil interfacial asphaltenes[J]. Fluid Phase Equilibria, 2023, 575: 113925. |
18 | Wen Z, Xiao P W, Wang P M, et al. Effect of Gemini surfactant structure on water/oil interfacial properties: a dissipative particle dynamics study[J]. Chemical Engineering Science, 2022, 251: 117466. |
19 | 燕友果, 郝羽键, 伊卓, 等. 改性聚丙烯酰胺降低油水界面张力行为的分子动力学模拟[J]. 中国石油大学学报(自然科学版), 2024, 48(3): 215-220. |
Yan Y G, Hao Y J, Yi Z, et al. Molecular dynamics simulation study on behavior of modified polyacrylamide reducing oil-water interfacial tension[J]. Journal of China University of Petroleum (Edition of Natural Science), 2024, 48(3): 215-220. | |
20 | Huang S M, Jiang G C, Guo C P, et al. Experimental study of adsorption/desorption and enhanced recovery of shale oil and gas by zwitterionic surfactants[J]. Chemical Engineering Journal, 2024, 487: 150628. |
21 | Palanisamy T, Tabatabai S A A, Zhang T, et al. Role of surfactants in cleaning of PVDF ultrafiltration membranes fouled by emulsified cutting oil[J]. Journal of Water Process Engineering, 2021, 40: 101923. |
22 | 孙浩玉, 张琰, 高阳, 等. NaSal/2SHNC对R14HTAB体系自组装行为的影响机制[J]. 中国石油大学学报(自然科学版), 2019, 43(6): 171-176. |
Sun H Y, Zhang Y, Gao Y, et al. Effecting mechanism of organic salts NaSal/2SHNC on self-assembly of cationic surfactant R14HTAB[J]. Journal of China University of Petroleum (Edition of Natural Science), 2019, 43(6): 171-176. | |
23 | Tanis-Kanbur M B, Velioğlu S, Tanudjaja H J, et al. Understanding membrane fouling by oil-in-water emulsion via experiments and molecular dynamics simulations[J]. Journal of Membrane Science, 2018, 566: 140-150. |
24 | Lu C Y, Xu X Y, Yuan Z Y, et al. Effects of structural changes of PPO and PEO of nonionic surfactants on oil–water interface properties: a molecular dynamics simulation study[J]. Chemical Physics, 2024, 586: 112397. |
25 | Jia H, Song J Y, Sun Y Q, et al. Molecular insight into the effect of the number of introduced ethoxy groups on the calcium resistance of anionic-nonionic surfactants at the oil/water interface[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 667: 131382. |
26 | Zeighami A, Kargozarfard Z, Khiabani N P, et al. Salt-acid-surfactant synergistic effects on interfacial characteristics of water/oil systems: a molecular dynamics simulation study[J]. Journal of Molecular Liquids, 2024, 396: 123996. |
27 | Jiang S S, Li X Y, Gao S T, et al. Opposite effect of cyclic and chain-like hydrocarbons on the trend of self-assembly transition in catanionic surfactant systems[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648: 129231. |
28 | Hasanov E E, Rahimov R A, Ahmadova G A, et al. Dissipative particle dynamics simulation and experimental studies of pseudo-gemini surfactants with different hydrophobic chain lengths[J]. Journal of Molecular Liquids, 2024, 411: 125766. |
29 | Khalil R A, Saadoon F A. Effect of presence of benzene ring in surfactant hydrophobic chain on the transformation towards one dimensional aggregate[J]. Journal of Saudi Chemical Society, 2015, 19(4): 423-428. |
30 | Cao X W, Qin X, Chen J W, et al. Adsorption kinetics investigation of surfactant molecules at the short-chain alkane-water interface[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 660: 130867. |
31 | Fu L P, Gu F, Liao K L, et al. Molecular dynamics simulation of enhancing surfactant flooding performance by using SiO2 nanoparticles[J]. Journal of Molecular Liquids, 2022, 367: 120404. |
32 | 李杰训, 许云飞, 王志华. 剪切流场中油-水界面成膜的影响因素及微观机制[J]. 石油学报, 2024, 45(8): 1244-1256. |
Li J X, Xu Y F, Wang Z H. Influencing factors and micromechanisms of film formation at oil-water interface in shear flow field[J]. Acta Petrolei Sinica, 2024, 45(8): 1244-1256. | |
33 | 宋瑛, 田宜灵, 肖衍繁, 等. 二元液液系统界面张力[J]. 化工学报, 1999, 50(5): 620-628. |
Song Y, Tian Y L, Xiao Y F, et al. Interfacial tensions of binary liquid-liquid systems[J]. CIESC Journal, 1999, 50(5): 620-628. | |
34 | Ahmadi M, Hou Q F, Wang Y Y, et al. Spotlight on reversible emulsification and demulsification of tetradecane-water mixtures using CO2/N2 switchable surfactants: Molecular dynamics (MD) simulation[J]. Energy, 2023, 279: 128100. |
35 | Zhang Z Q, Tao Z, Zhang Y, et al. Molecular dynamics study on the interaction of phosphorus building gypsum/surfactant composites[J]. Journal of Molecular Graphics and Modelling, 2024, 126: 108650. |
36 | 刘峰, 韩春硕, 郁林军, 等. 分子动力学模拟表面活性剂驱油的研究进展与展望[J]. 油气地质与采收率, 2024, 31(3): 78-87. |
Liu F, Han C S, Yu L J, et al. Research progress and prospects of surfactant flooding in molecular dynamics simulation[J]. Petroleum Geology and Recovery Efficiency, 2024, 31(3): 78-87. | |
37 | Liu Z L, Gao Y H, Shi D, et al. Selective solubilization of organic molecules into vesicles formed by Gemini surfactants: a dissipative particle dynamics study[J]. Fuel, 2024, 375: 132591. |
38 | Jia H, Wei X, Sun Y Q, et al. Effects of surfactant with different injection times on asphaltene adsorption behaviors on the kaolinite surfaces: a molecular simulation study[J]. Applied Surface Science, 2023, 639: 158167. |
39 | Li B, Su D, Zhang L, et al. Mechanisms of N2 molecule adsorption and accumulation on surfactant-modified substrates: a molecular dynamics simulation[J]. Journal of Molecular Liquids, 2024, 411: 125679. |
40 | Wang K, Xu M, Zhou B, et al. Study on the effects of inorganic salts and ionic surfactants on the wettability of coal based on the experimental and molecular dynamics investigations[J]. Energy, 2024, 300: 131610. |
41 | Yuan M Y, Nie W, Zhou W W, et al. Determining the effect of the non-ionic surfactant AEO9 on lignite adsorption and wetting via molecular dynamics (MD) simulation and experiment comparisons[J]. Fuel, 2020, 278: 118339. |
42 | Meng J Q, Yin F F, Li S C, et al. Effect of different concentrations of surfactant on the wettability of coal by molecular dynamics simulation[J]. International Journal of Mining Science and Technology, 2019, 29(4): 577-584. |
43 | 张雪龄, 谷军恒, 叶强, 等. 分子模拟技术在页岩油气吸附和流动特性研究中的应用进展[J]. 中国海上油气, 2023, 35(3): 103-115. |
Zhang X L, Gu J H, Ye Q, et al. Application progress of molecular simulation technology in the study of adsorption and flow characteristics of shale oil and gas[J]. China Offshore Oil and Gas, 2023, 35(3): 103-115. | |
44 | Gurina D L, Budkov Y A. The self-assembly of water reverse micelles with imidazolium ionic liquids in supercritical carbon dioxide: a molecular dynamics simulation study[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 695: 134209. |
45 | Ahmad Bhat I, Roy B, Hazra P, et al. Conformational and solution dynamics of hemoglobin (Hb) in presence of a cleavable gemini surfactant: Insights from spectroscopy, atomic force microscopy, molecular docking and density functional theory[J]. Journal of Colloid and Interface Science, 2019, 538: 489-498. |
46 | Kanduč M, Reed J, Schlaich A, et al. Molecular dynamics simulations as support for experimental studies on surfactant interfacial layers[J]. Current Opinion in Colloid & Interface Science, 2024, 72: 101816. |
47 | Jin H, Zhang Y S, Dong H T, et al. Molecular dynamics simulations and experimental study of the effects of an ionic surfactant on the wettability of low-rank coal[J]. Fuel, 2022, 320: 123951. |
48 | Hu G Y, Cui K X, Jin S M, et al. Effect of surfactant on dynamics and gas-liquid mass transfer for single carbon dioxide bubbles[J]. Journal of Cleaner Production, 2024, 453: 142148. |
49 | Farkas E, Dóra Kovács K, Szekacs I, et al. Kinetic monitoring of molecular interactions during surfactant-driven self-propelled droplet motion by high spatial resolution waveguide sensing[J]. Journal of Colloid and Interface Science, 2025, 677: 352-364. |
50 | Li G L, Xu X J, Zuo Y Y. Phase transitions of the pulmonary surfactant film at the perfluorocarbon-water interface[J]. Biophysical Journal, 2023, 122(10): 1772-1780. |
51 | Pegg J C, Eastoe J. Solid mesostructured polymer–surfactant films at the air–liquid interface[J]. Advances in Colloid and Interface Science, 2015, 222: 564-572. |
52 | Liang M Y, Ma C, Qin W Q, et al. A synergetic binary system of waste cooking oil-derived bio-based surfactants and its interfacial performance for enhanced oil recovery[J]. Colloids and Surfaces C: Environmental Aspects, 2024, 2: 100039. |
53 | Guo P, Zhou R, Tian Z K, et al. High-efficiency mechanism of enhancement of spreading performance of oil involving surfactant-laden oil droplet spreading over water surface[J]. Journal of Molecular Liquids, 2023, 388: 122723. |
54 | Lee S, Lee G, Ryu J, et al. Surfactant-free, spray-assisted water droplet templating for efficient fabrication of ultraviolet-curable polydimethylsiloxane sponge as a reusable oil cleanup sorbent[J]. Chemical Engineering Journal, 2024, 488: 150958. |
55 | Okamura S, Aono K, Yokoyama M, et al. Influence of dialkyl chains of sulfosuccinate sodium salt surfactant on interfacial tension between hydrophobic material and water[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 681: 132770. |
56 | 王贤君, 张明慧. 双链表面活性剂压裂液研究及应用[J]. 大庆石油地质与开发, 2015, 34(5): 77-80. |
Wang X J, Zhang M H. Researches and application of double-chain surfactant fracturing fluid[J]. Petroleum Geology & Oilfield Development in Daqing, 2015, 34(5): 77-80. | |
57 | Yang D L, He D Y, Huang Y, et al. Real-time and quantitative investigation of zwitterionic surfactant interaction at oil-water interface: Interferometry experimental and MD simulation insights[J]. Journal of Molecular Liquids, 2024, 398: 124265. |
58 | Lei X T, Liu B, Hou Q F, et al. Switchability and synergistic effect of a CO2-responsive surfactant with co-surfactants at an O/W interface: a molecular insight[J]. Journal of Molecular Liquids, 2024, 405: 125051. |
59 | Yong W, Wei Z J, Zhou Y F. Molecular dynamics simulation of oil displacement using surfactant in a nano-silica pore[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 684: 133165. |
60 | Zahariev T K, Tadjer A V, Ivanova A N. Transfer of non-ionic surfactants across the water-oil interface: a molecular dynamics study[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 506: 20-31. |
61 | Gassin P M, Champory R, Martin-Gassin G, et al. Surfactant transfer across a water/oil interface: a diffusion/kinetics model for the interfacial tension evolution[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 436: 1103-1110. |
62 | McMillin R E, Nowaczyk J, Centofanti K, et al. Effect of small molecule surfactant structure on the stability of water-in-lubricating oil emulsions[J]. Journal of Colloid and Interface Science, 2023, 652: 825-835. |
63 | 张扬. 阴离子表面活性剂耐盐性能的实验和理论研究[D]. 东营: 中国石油大学(华东), 2013. |
Zhang Y. Experimental and theoretical study on salt tolerance of anionic surfactants[D]. Dongying: China University of Petroleum (Huadong), 2013. |
[1] | 裴蓓, 郝治斌, 徐天祥, 钟子琪, 李瑞, 贾冲, 段玉龙. 表面活性剂对含盐双流体细水雾灭火效能的影响[J]. 化工学报, 2024, 75(9): 3369-3378. |
[2] | 霍宗伟, 牛亚宾, 潘艳秋. 油水膜分离中高黏度油滴行为研究和影响因素分析[J]. 化工学报, 2024, 75(6): 2262-2273. |
[3] | 申州洋, 薛康, 刘青, 史成香, 邹吉军, 张香文, 潘伦. 吸热型纳米流体燃料研究进展[J]. 化工学报, 2024, 75(4): 1167-1182. |
[4] | 朱永康, 刘勰民, 张锋, 侯文华, 张志炳. 污染对单气泡运动与传质特性的影响[J]. 化工学报, 2024, 75(11): 4170-4177. |
[5] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[6] | 徐文超, 孙志高, 李翠敏, 李娟, 黄海峰. 静态条件下表面活性剂E-1310对HCFC-141b水合物生成的影响[J]. 化工学报, 2023, 74(5): 2179-2185. |
[7] | 葛运通, 王玮, 李楷, 肖帆, 于志鹏, 宫敬. 多相分散体系中微油滴与改性二氧化硅表面间作用力的AFM研究[J]. 化工学报, 2023, 74(4): 1651-1659. |
[8] | 靳志远, 单国荣, 潘鹏举. AM/AMPS/SSS三元共聚物的制备及耐温耐盐性能[J]. 化工学报, 2023, 74(2): 916-923. |
[9] | 廖艺, 牛亚宾, 潘艳秋, 俞路. 复配表面活性剂对油水界面行为和性质影响的模拟研究[J]. 化工学报, 2022, 73(9): 4003-4014. |
[10] | 苏晓辉, 张弛, 徐志锋, 金辉, 王治国. 黏弹性表面活性剂溶液中颗粒沉降特性研究[J]. 化工学报, 2022, 73(5): 1974-1985. |
[11] | 常楚鑫, 徐黎婷, 殷嘉伦, 雒先, 贾洪伟. 浸没状态下的低压电润湿行为研究[J]. 化工学报, 2022, 73(4): 1673-1682. |
[12] | 徐一鸣, 袁华, 刘素丽, 李平, 严佩蓉, 赵曦, 卢俊华, 赵唯, 张学兰. 微通道反应器中工业混合直链烷基苯磺酸盐的连续合成工艺研究[J]. 化工学报, 2022, 73(3): 1184-1193. |
[13] | 张瑾渊, 徐娜, 贺文云, 吕耀东, 刘子璐, 张兴芳. 消防用PEO/OTAC/NaSal减阻体系的介观分子动力学分析[J]. 化工学报, 2022, 73(3): 1157-1165. |
[14] | 杨振, 姚元鹏, 李昀, 吴慧英. 表面活性剂对水过冷池沸腾特性影响实验研究[J]. 化工学报, 2022, 73(3): 1093-1101. |
[15] | 刘成治, 李春曦, 周静宜, 叶学民. 溶质Marangoni效应对降膜流动稳定性的影响[J]. 化工学报, 2022, 73(12): 5405-5413. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 200
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 114
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||