化工学报 ›› 2025, Vol. 76 ›› Issue (7): 3498-3508.DOI: 10.11949/0438-1157.20241392

• 能源和环境工程 • 上一篇    下一篇

生物质化学链气化原位补氢制H2/CO可控合成气

吴天灏1,2(), 叶霆威2, 林延1,2, 黄振1,2()   

  1. 1.中国科学技术大学能源科学与技术学院,安徽 合肥 230026
    2.中国科学院广州能源研究所,广东 广州 510640
  • 收稿日期:2024-12-02 修回日期:2024-12-27 出版日期:2025-07-25 发布日期:2025-08-13
  • 通讯作者: 黄振
  • 作者简介:吴天灏(2000—),男,硕士研究生,wuth@ms.giec.ac.cn
  • 基金资助:
    国家自然科学基金项目(52076209);国家自然科学基金项目(52006224);国家自然科学基金项目(52106285)

In-situ hydrogen supplementation of biomass chemical looping gasification to produce syngas with controllable H2/CO

Tianhao WU1,2(), Tingwei YE2, Yan LIN1,2, Zhen HUANG1,2()   

  1. 1.School of Energy Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
    2.Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, Guangdong, China
  • Received:2024-12-02 Revised:2024-12-27 Online:2025-07-25 Published:2025-08-13
  • Contact: Zhen HUANG

摘要:

提出一种通过生物质化学链气化(biomass chemical looping gasification,BCLG)耦合水蒸气化学链重整制氢(chemical looping reforming hydrogen production,CLRHP)制备H2/CO可控合成气的生物质化学链气化原位补氢(BCLG-CLRHP)的新型技术。以NiFe2O4(ZrO2)为载氧体,在反应温度为900℃,晶格氧(OC)和生物质(B)的质量比为0.5时,合成气产率最高,为0.61 L/g(生物质)。在BCLG过程中,蒸汽(S)和生物质(B)的质量比为0.24时,生物质碳转化率为92%,载氧体还原程度较高且BCLG过程产生的合成气中H2/CO达1.0,表明水蒸气的添加显著提高了生物质碳转化率和合成气中的H2/CO。在CLRHP过程中调控水蒸气含量,可以制备高浓度H2,同时整合BCLG与CLRHP过程产生的气体,可获得H2/CO达2.2,CO2/CO为0.67的清洁合成气。在15次循环实验后,BCLG-CLRHP过程制备的合成气中H2/CO为1.8,CO2/CO为0.71。所提出的方法可以潜在地应用于提供具有H2/CO为1.0~2.2的清洁合成气,用于各种合成过程,例如费托合成、乙酸和羰基合成。

关键词: 生物质, 合成气, 化学链气化, 原位补氢, H2/CO可控, 制氢

Abstract:

This study proposes a novel technology for preparing syngas with controllable H2/CO by in-situ hydrogenation of biomass chemical looping gasification (BCLG-CLRHP) through coupling biomass chemical looping gasification (BCLG) with steam chemical looping reforming hydrogen production (CLRHP). The maximum syngas yield, 0.61 L/g (biomass), was obtained at a reaction temperature of 900℃ and an optimal lattice oxygen to biomass (OC/B, mass) of 0.5, utilizing NiFe2O4(ZrO2) as the oxygen carriers (OC). In the BCLG process, a steam/biomass (S/B, mass) of 0.24 yielded a biomass carbon conversion rate of 92%. This also resulted in a high degree of oxygen carrier reduction and a H2/CO of 1.0 in the syngas produced. These findings suggest that the introduction of steam significantly enhances both the biomass carbon conversion and the H2/CO in the syngas. The modulation of H2O content within the CLRHP process facilitates the production of a high concentration of H2. Concurrently, the integration of gases generated by both the BCLG and CLRHP processes yields a clean syngas characterized by an H2/CO of 2.2 and a CO2/CO of 0.67. Following 15 experimental cycles, the syngas generated via the BCLG-CLRHP process exhibited a H2/CO of approximately 1.8 and a CO2/CO of roughly 0.71. The proposed methodology holds potential for application in generating clean syngas with an H2/CO ranging from 1.0 to 2.2. This could be beneficial for a variety of synthesis processes, including Fischer-Tropsch synthesis, acetic acid synthesis, and carbonyl synthesis.

Key words: biomass, syngas, chemical looping gasification, in-situ hydrogen replenishment, controllable H2/CO, hydrogen production

中图分类号: