化工学报 ›› 2025, Vol. 76 ›› Issue (6): 2687-2700.DOI: 10.11949/0438-1157.20241403
卢丽丽1(
), 李晨1, 陈柳云1, 谢新玲1, 罗轩1, 苏通明1(
), 秦祖赠1, 纪红兵2
收稿日期:2024-12-04
修回日期:2025-01-21
出版日期:2025-06-25
发布日期:2025-07-09
通讯作者:
苏通明
作者简介:卢丽丽(2000—),女,硕士研究生,lulili20220103@163.com
基金资助:
Lili LU1(
), Chen LI1, Liuyun CHEN1, Xinling XIE1, Xuan LUO1, Tongming SU1(
), Zuzeng QIN1, Hongbing JI2
Received:2024-12-04
Revised:2025-01-21
Online:2025-06-25
Published:2025-07-09
Contact:
Tongming SU
摘要:
利用光催化技术将大气中的CO2转化为高附加值的化学原料,是缓解能源和环境问题的有效方法。通过水热法制备了BiOBr,并采用聚乙烯吡咯烷酮(PVP)调控BiOBr的形貌。分析催化剂表征结果可知,引入PVP可成功制备得到纳米球状的BiOBr-xP(x表示引入PVP的量),相比于BiOBr,BiOBr-xP具有更大的比表面积,提高了活性位点的暴露概率。同时,PVP的引入改善了BiOBr的能带结构,BiOBr-xP的导带电势更负,有效提高了BiOBr的还原能力。光催化CO2还原测试结果表明,BiOBr-2P具有最佳的光催化CO2还原活性,CO的生成速率为2.74 μmol‧g-1‧h-1,是未引入PVP制备的BiOBr(0.81 μmol‧g-1‧h-1)的3.38倍。
中图分类号:
卢丽丽, 李晨, 陈柳云, 谢新玲, 罗轩, 苏通明, 秦祖赠, 纪红兵. BiOBr的形貌调控及其光催化CO2还原性能的研究[J]. 化工学报, 2025, 76(6): 2687-2700.
Lili LU, Chen LI, Liuyun CHEN, Xinling XIE, Xuan LUO, Tongming SU, Zuzeng QIN, Hongbing JI. Morphology regulation of BiOBr and study on its performance of photocatalytic CO2 reduction[J]. CIESC Journal, 2025, 76(6): 2687-2700.
图1 BiOBr和BiOBr-xP的XRD谱图(a)、FTIR光谱图(b)、N2吸附-脱附等温线(c)和孔径分布 (d)
Fig.1 XRD patterns (a), FTIR spectra (b), N2 adsorption-desorption isotherms (c) and pore size distribution (d) of BiOBr and BiOBr-xP
| 样品 | 比表面积/(m2‧g-1) | 孔容/(cm3‧g-1) | 平均孔径/nm |
|---|---|---|---|
| BiOBr | 6.26 | 0.025 | 14.31 |
| BiOBr-1P | 23.16 | 0.084 | 8.59 |
| BiOBr-2P | 24.56 | 0.072 | 7.84 |
| BiOBr-5P | 21.25 | 0.064 | 7.08 |
| BiOBr-10P | 12.19 | 0.041 | 7.78 |
表1 BiOBr和BiOBr-xP的比表面积、孔容和平均孔径
Table 1 Specific surface area, pore volume, and average pore diameter of BiOBr and BiOBr-xP
| 样品 | 比表面积/(m2‧g-1) | 孔容/(cm3‧g-1) | 平均孔径/nm |
|---|---|---|---|
| BiOBr | 6.26 | 0.025 | 14.31 |
| BiOBr-1P | 23.16 | 0.084 | 8.59 |
| BiOBr-2P | 24.56 | 0.072 | 7.84 |
| BiOBr-5P | 21.25 | 0.064 | 7.08 |
| BiOBr-10P | 12.19 | 0.041 | 7.78 |
图2 BiOBr(a)、BiOBr-1P(b)、BiOBr-2P(c)、BiOBr-5P(d)和BiOBr-10P(e)的SEM图
Fig.2 SEM images of BiOBr (a), BiOBr-1P (b), BiOBr-2P (c), BiOBr-5P (d), and BiOBr-10P (e)
图3 BiOBr[(a)~(c)]和BiOBr-2P[(d)~(f)]的TEM和HRTEM图,BiOBr-2P的HAADF-STEM图(g)和相应的EDS元素映射图[(h)~(j)]
Fig.3 TEM and HRTEM images of BiOBr[(a)—(c)] and BiOBr-2P[(d)—(f)], HAADF-STEM image (g) and the corresponding EDS element mappings [(h)—(j)] of BiOBr-2P
图4 BiOBr和BiOBr-2P的XPS全谱图(a)和Bi 4f(b)、Br 3d(c)、O 1s(d)和C 1s(e)的高分辨率XPS谱图,BiOBr-2P的N 1s(f)的高分辨率XPS谱图
Fig.4 XPS survey spectra of BiOBr and BiOBr-2P (a), high resolution XPS spectra of Bi 4f (b), Br 3d (c), O 1s (d), and C 1s (e) in BiOBr and BiOBr-2P, high resolution XPS spectra of N 1s (f) in BiOBr-2P
图5 BiOBr和BiOBr-xP的紫外-可见漫反射光谱(a)、禁带宽度(b)、PL光谱图(c)和瞬态光电流响应图(d)
Fig.5 UV-Vis diffuse reflectance spectra (a), band gap (b), PL spectra (c) and transient photocurrent response (d) of BiOBr and BiOBr-xP
图6 BiOBr和BiOBr-xP光催化CO2还原为CO的产量(a)和速率(b),不同反应条件下BiOBr-2P光催化CO2还原为CO的产量(c),BiOBr和BiOBr-2P光催化CO2还原的稳定性测试(d)
Fig.6 CO yield (a) and production rate (b) of photocatalytic CO2 reduction over BiOBr and BiOBr-xP, CO yield of photocatalytic CO2 reduction over BiOBr-2P under different reaction conditions (c), stability test of photocatalytic CO2 reduction over BiOBr and BiOBr-2P (d)
图7 BiOBr-2P反应前(a)和反应后(b)的SEM图;BiOBr-2P反应前和反应后的XRD谱图(c)和FTIR光谱图(d)
Fig.7 SEM images of BiOBr-2P before (a) and after (b) reaction, XRD patterns (c) and FTIR spectra (d) of BiOBr-2P before and after reaction
图8 黑暗下CO2和H2O在BiOBr(a)和BiOBr-2P(c)上共吸附的原位漫反射傅里叶变换红外光谱和光照下BiOBr(b)和BiOBr-2P(d)光催化CO2还原反应的原位漫反射傅里叶变换红外光谱
Fig.8 In-situ DRIFTS spectra of coadsorption of CO2 and H2O on BiOBr (a) and BiOBr-2P (c) in the dark, in-situ DRIFTS spectra of photocatalytic CO2 reduction reaction over BiOBr (b) and BiOBr-2P (d) under light irradiation
图9 BiOBr和BiOBr-2P的Mott-Schottky曲线[(a)、(b)]和XPS价带谱[(c)、(d)]
Fig.9 Mott-Schottky plots [(a), (b)] and XPS valence band spectra [(c), (d)] of BiOBr and BiOBr-2P
| [1] | Jiang W B, Loh H, Low B Q L, et al. Role of oxygen vacancy in metal oxides for photocatalytic CO2 reduction[J]. Applied Catalysis B: Environmental, 2023, 321: 122079. |
| [2] | 王峰, 张顺鑫, 余方博, 等. 光催化CO2还原制碳氢燃料系统优化策略研究[J]. 化工学报, 2023, 74(1): 29-44. |
| Wang F, Zhang S X, Yu F B, et al. Optimization strategy for producing carbon based fuels by photocatalytic CO2 reduction[J]. CIESC Journal, 2023, 74(1): 29-44. | |
| [3] | Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38. |
| [4] | Li H, Song Q J, Wan S J, et al. Atomic interface engineering of single-atom Pt/TiO2-Ti3C2 for boosting photocatalytic CO2 reduction[J]. Small, 2023, 19(34): e2301711. |
| [5] | Ali S, Razzaq A, Kim H, et al. Activity, selectivity, and stability of earth-abundant CuO/Cu2O/Cu0-based photocatalysts toward CO2 reduction[J]. Chemical Engineering Journal, 2022, 429: 131579. |
| [6] | 李腾, 张利君, 李小红, 等. Cu3P修饰改性CdS光催化析氢性能研究[J]. 聊城大学学报(自然科学版), 2023, 36(2): 25-34, 42. |
| Li T, Zhang L J, Li X H, et al. Study on Cu3P as a cocatalyst to improve the photo-catalytic hydrogen evolution performance of CdS[J]. Journal of Liaocheng University (Natural Science Edition), 2023, 36(2): 25-34, 42. | |
| [7] | Khan B, Raziq F, Bilal Faheem M, et al. Electronic and nanostructure engineering of bifunctional MoS2 towards exceptional visible-light photocatalytic CO2 reduction and pollutant degradation[J]. Journal of Hazardous Materials, 2020, 381: 120972. |
| [8] | Zhao L L, Hou H L, Wang L, et al. Atomic-level surface modification of ultrathin Bi2WO6 nanosheets for boosting photocatalytic CO2 reduction[J]. Chemical Engineering Journal, 2024, 480: 148033. |
| [9] | 薛义松, 郭恩言, 卢启芳. Bi2MoO6/Ni3V2O8异质结构纳米纤维的合成及光催化性能研究[J]. 聊城大学学报(自然科学版), 2022, 35(6): 58-67. |
| Xue Y S, Guo E Y, Lu Q F. Study on preparation and photocatalytic properties of Bi2MoO6/Ni3V2O8 heterostructured nanofibers[J]. Journal of Liaocheng University (Natural Science Edition), 2022, 35(6): 58-67. | |
| [10] | Sun Y, Younis S A, Kim K H, et al. Potential utility of BiOX photocatalysts and their design/modification strategies for the optimum reduction of CO2 [J]. Science of the Total Environment, 2023, 863: 160923. |
| [11] | Xu Z D, Chen Y, Wang B H, et al. Highly selective photocatalytic CO2 reduction and hydrogen evolution facilitated by oxidation induced nitrogen vacancies on g-C3N4 [J]. Journal of Colloid and Interface Science, 2023, 651: 645-658. |
| [12] | Gong Y N, Mei J H, Shi W J, et al. Boosting CO2 photoreduction to formate or CO with high selectivity over a covalent organic framework covalently anchored on graphene oxide[J]. Angewandte Chemie International Edition, 2024, 63(10): e202318735. |
| [13] | Chen Z J, Xiong J Y, Cheng G. Recent advances in brookite phase TiO2-based photocatalysts toward CO2 reduction[J]. Fuel, 2024, 357: 129806. |
| [14] | Zhang Z R, Guo R T, Xia C, et al. B-TiO2/CuInS2 photocatalyst based on the synergistic effect of oxygen vacancy and Z-scheme heterojunction for improving photocatalyst CO2 reduction[J]. Separation and Purification Technology, 2023, 323: 124461. |
| [15] | Fan G D, Hu K W, Li X, et al. Highly efficient S-scheme AgBr/BiOBr with visible light photocatalytic performance for carbamazepine degradation: mechanism insight and toxicity assessment[J]. Journal of Environmental Chemical Engineering, 2023, 11(5): 110918. |
| [16] | Zhao J L, Miao Z R, Zhang Y F, et al. Oxygen vacancy-rich hierarchical BiOBr hollow microspheres with dramatic CO2 photoreduction activity[J]. Journal of Colloid and Interface Science, 2021, 593: 231-243. |
| [17] | Senasu T, Chankhanittha T, Hemavibool K, et al. Solvothermal synthesis of BiOBr photocatalyst with an assistant of PVP for visible-light-driven photocatalytic degradation of fluoroquinolone antibiotics[J]. Catalysis Today, 2022, 384: 209-227. |
| [18] | Xie F X, Xi Q, Zhang M, et al. Amorphous FeOOH-mediated directional charges transfer in light-switchable oxygen vacancies BiOBr for boosting photocatalytic oxygen evolution[J]. Separation and Purification Technology, 2024, 328: 125082. |
| [19] | Li X B, Hu Y, Dong F, et al. Non-noble-metallic Ni2P nanoparticles modified OV-BiOBr with boosting photoelectrochemical hydrogen evolution without sacrificial agent[J]. Applied Catalysis B: Environmental, 2023, 325: 122341. |
| [20] | Lu L Z, Zhang H Y, Sun Z, et al. Creation of robust oxygen vacancies in 2D ultrathin BiOBr nanosheets by irradiation through photocatalytic memory effect for enhanced CO2 reduction[J]. Chemical Engineering Journal, 2023, 477: 146892. |
| [21] | Gao K Y, Zhu H B, Zhang C M, et al. Boosting photocatalytic nitrogen fixation via in situ constructing Bi metal active sites over BiOBr/BiOI heterojunction[J]. Solar RRL, 2022, 6(12): 2200869. |
| [22] | Talreja N, Ashfaq M, Chauhan D, et al. PVP encapsulated MXene coated on PET surface (PMP)-based photocatalytic materials: a novel photo-responsive assembly for the removal of tetracycline[J]. Environmental Research, 2023, 233: 116439. |
| [23] | Ribeiro C S, Lansarin M A. Enhanced photocatalytic activity of Bi2WO6 with PVP addition for CO2 reduction into ethanol under visible light[J]. Environmental Science and Pollution Research International, 2021, 28(19): 23667-23674. |
| [24] | Wang Q L, Jin Y H, Zhang Y F, et al. Polyvinyl pyrrolidone-coordinated ultrathin bismuth oxybromide nanosheets for boosting photoreduction of carbon dioxide via ligand-to-metal charge transfer[J]. Journal of Colloid and Interface Science, 2022, 606: 1087-1100. |
| [25] | Ni Q Q, Ke X, Qian W J, et al. Insight into tetracycline photocatalytic degradation mechanism in a wide pH range on BiOI/BiOBr: coupling DFT/QSAR simulations with experiments[J]. Applied Catalysis B: Environmental, 2024, 340: 123226. |
| [26] | Xue X L, Chen R P, Chen H W, et al. Oxygen vacancy engineering promoted photocatalytic ammonia synthesis on ultrathin two-dimensional bismuth oxybromide nanosheets[J]. Nano Letters, 2018, 18(11): 7372-7377. |
| [27] | Du C W, Nie S Y, Feng W W, et al. Hydroxyl regulating effect on surface structure of BiOBr photocatalyst toward high-efficiency degradation performance[J]. Chemosphere, 2022, 287: 132246. |
| [28] | Cai M, Shui A Z, Du B. Constructing the ZnO/BiOBr hierarchical heterojunction for efficient pollutant photodegradation driven by visible-light[J]. Surfaces and Interfaces, 2023, 37: 102643. |
| [29] | Gao Z Y, Yao B H, Yang F, et al. Preparation of BiOBr-Bi heterojunction composites with enhanced photocatalytic properties on BiOBr surface by in situ reduction[J]. Materials Science in Semiconductor Processing, 2020, 108: 104882. |
| [30] | Tang Q Y, Yang M J, Yang S Y, et al. Enhanced photocatalytic degradation of glyphosate over 2D CoS/BiOBr heterojunctions under visible light irradiation[J]. Journal of Hazardous Materials, 2021, 407: 124798. |
| [31] | Zhou Y, Zhao H J, Ma F, et al. Synthesis and photocatalytic degradation performance of BiOBr nanoflowers with tunable exposed (001) facet and band gap[J]. Inorganic Chemistry Communications, 2024, 164: 112386. |
| [32] | Xie J, Lu Z J, Feng Y, et al. A small organic molecule strategy for remedying oxygen vacancies by bismuth defects in BiOBr nanosheet with excellent photocatalytic CO2 reduction[J]. Nano Research, 2024, 17(1): 297-306. |
| [33] | Shen M Z, Cai X L, Cao B W, et al. Boron-doped ultrathin BiOBr nanosheet promotion for photocatalytic reduction of CO2 into CO[J]. Journal of Alloys and Compounds, 2024, 981: 173727. |
| [34] | Huang H W, Li X W, Wang J J, et al. Anionic group self-doping as a promising strategy: band-gap engineering and multi-functional applications of high-performance C O 3 2 - -doped Bi2O2CO3 [J]. ACS Catalysis, 2015, 5(7): 4094-4103. |
| [35] | Wang H, Cai X N, Zhang Y J, et al. Double-template-regulated bionic mineralization for the preparation of flower-like BiOBr/carbon foam/PVP composite with enhanced stability and visible-light-driven catalytic activity[J]. Applied Surface Science, 2021, 555: 149708. |
| [36] | Chen K T, Chong S K, Yuan L L, et al. Conversion-alloying dual mechanism anode: nitrogen-doped carbon-coated Bi2Se3 wrapped with graphene for superior potassium-ion storage[J]. Energy Storage Materials, 2021, 39: 239-249. |
| [37] | Wu Y F, Xu M J, Wang Y Q, et al. BiOCl/BiOBr composites for efficient photocatalytic carbon dioxide reduction[J]. Applied Catalysis A: General, 2024, 677: 119708. |
| [38] | Sun J J, Zhang Y X, Fan S Y, et al. An efficient Z-type CeO2/BiOBr heterostructure with enhanced photo-oxidation degradation of o-DCB and CO2 reduction ability[J]. Applied Catalysis B: Environment and Energy, 2024, 356: 124248. |
| [39] | Luo Z S, Ye X Y, Zhang S J, et al. Unveiling the charge transfer dynamics steered by built-in electric fields in BiOBr photocatalysts[J]. Nature Communications, 2022, 13(1): 2230. |
| [40] | Wang L, Liu G P, Wang B, et al. Oxygen vacancies engineering–mediated BiOBr atomic layers for boosting visible light-driven photocatalytic CO2 reduction[J]. Solar RRL, 2021, 5(6): 2000480. |
| [41] | Wang B, Zhao J Z, Chen H L, et al. Unique Z-scheme carbonized polymer dots/Bi4O5Br2 hybrids for efficiently boosting photocatalytic CO2 reduction[J]. Applied Catalysis B: Environmental, 2021, 293: 120182. |
| [42] | Meng J Z, Duan Y Y, Jing S J, et al. Facet junction of BiOBr nanosheets boosting spatial charge separation for CO2 photoreduction[J]. Nano Energy, 2022, 92: 106671. |
| [43] | Xi Y M, Mo W H, Fan Z X, et al. A mesh-like BiOBr/Bi2S3 nanoarray heterojunction with hierarchical pores and oxygen vacancies for broadband CO2 photoreduction[J]. Journal of Materials Chemistry A, 2022, 10(39): 20934-20945. |
| [44] | Yin S K, Zhao X X, Jiang E H, et al. Boosting water decomposition by sulfur vacancies for efficient CO2 photoreduction[J]. Energy & Environmental Science, 2022, 15(4): 1556-1562. |
| [45] | Jin D N, Ma J L, Sun R C. Nitrogen-doped biochar nanosheets facilitate charge separation of a Bi/Bi2O3 nanosphere with a Mott–Schottky heterojunction for efficient photocatalytic reforming of biomass[J]. Journal of Materials Chemistry C, 2022, 10(9): 3500-3509. |
| [46] | Wang S Y, Ding X, Zhang X H, et al. In situ carbon homogeneous doping on ultrathin bismuth molybdate: a dual-purpose strategy for efficient molecular oxygen activation[J]. Advanced Functional Materials, 2017, 27(47): 1703923. |
| [47] | Yue X Y, Cheng L, Fan J J, et al. 2D/2D BiVO4/CsPbBr3 S-scheme heterojunction for photocatalytic CO2 reduction: insights into structure regulation and Fermi level modulation[J]. Applied Catalysis B: Environmental, 2022, 304: 120979. |
| [48] | Wu J M, Li K Y, Yang S Y, et al. In-situ construction of BiOBr/Bi2WO6 S-scheme heterojunction nanoflowers for highly efficient CO2 photoreduction: regulation of morphology and surface oxygen vacancy[J]. Chemical Engineering Journal, 2023, 452: 139493. |
| [49] | Zhao M Y, Qin J Y, Wang N, et al. Reconstruction of surface oxygen vacancy for boosting CO2 photoreduction mediated by BiOBr/CdS heterojunction[J]. Separation and Purification Technology, 2024, 329: 125179. |
| [1] | 孙云龙, 徐肖肖, 黄永方, 郭纪超, 陈卫卫. 水平光滑管内CO2流动沸腾的非绝热可视化研究[J]. 化工学报, 2025, 76(S1): 230-236. |
| [2] | 郭纪超, 徐肖肖, 孙云龙. 基于植物工厂中的CO2浓度气流模拟及优化研究[J]. 化工学报, 2025, 76(S1): 237-245. |
| [3] | 孔繁臣, 张硕, 唐明生, 邹慧明, 胡舟航, 田长青. 二氧化碳直线压缩机气体轴承模拟[J]. 化工学报, 2025, 76(S1): 281-288. |
| [4] | 何婷, 张开, 林文胜, 陈利琼, 陈家富. 沼气超临界压力低温脱碳-液化耦合流程研究[J]. 化工学报, 2025, 76(S1): 418-425. |
| [5] | 宋粉红, 王文光, 郭亮, 范晶. C元素修饰g-C3N4对TiO2的调控及复合材料光催化产氢性能研究[J]. 化工学报, 2025, 76(6): 2983-2994. |
| [6] | 唐磊, 王振菲, 李聪利, 杨佳辉, 郑浩, 石琪, 董晋湘. Co-MOF-74和Mg-MOF-74的CO工作吸附容量及操作条件[J]. 化工学报, 2025, 76(5): 2279-2293. |
| [7] | 陈建兵, 常昊, 高明, 邢兵, 张磊, 刘奇磊. 基于反应模板与分子动力学的胺基相变吸收剂分相预测方法[J]. 化工学报, 2025, 76(5): 2387-2396. |
| [8] | 张翼辰, 张文彪, 李浩洋, 宁晓阳. 基于双差压模型的文丘里管气液两相CO2流量测量[J]. 化工学报, 2025, 76(4): 1493-1503. |
| [9] | 赵俊德, 周爱国, 陈彦霖, 郑家乐, 葛天舒. 吸附法CO2直接空气捕集技术能耗现状[J]. 化工学报, 2025, 76(4): 1375-1390. |
| [10] | 张赵雪, 李正宇, 崔文慧, 王倩, 王志平, 龚领会. 基于液氖液氮梯级蓄冷的液氢储能中冷能回收利用研究[J]. 化工学报, 2025, 76(4): 1731-1741. |
| [11] | 产文, 余万, 王岗, 苏华山, 黄芬霞, 胡涛. 改进回热布局的Allam循环热力、经济性能分析和双目标优化[J]. 化工学报, 2025, 76(4): 1680-1692. |
| [12] | 霍军良, 唐治国, 邱宗君, 冯玉华, 蒋旭, 王乐怡, 杨宇, 乔帆帆, 赫一凡, 喻健良. 节流作用下CO2管道放空过程的冻堵风险实验研究[J]. 化工学报, 2025, 76(4): 1898-1908. |
| [13] | 吴罗长, 杨泽宇, 颜建国, 朱旭涛, 陈阳, 王子辰. 微小方形通道内近超临界压力二氧化碳流动换热特性实验研究[J]. 化工学报, 2025, 76(4): 1583-1594. |
| [14] | 张履胜, 王治红, 柳青, 李雪雯, 谭仁敏. 液-液相变吸收剂捕集二氧化碳研究进展[J]. 化工学报, 2025, 76(3): 933-950. |
| [15] | 刘孟扬, 孙雪剑, 毛文元, 邓晰文, 雷基林. 考虑微观表面分层特征密封环接触特性分析[J]. 化工学报, 2025, 76(3): 1156-1169. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号