化工学报 ›› 2025, Vol. 76 ›› Issue (1): 363-373.DOI: 10.11949/0438-1157.20240986
收稿日期:
2024-09-02
修回日期:
2024-10-24
出版日期:
2025-01-25
发布日期:
2025-02-08
通讯作者:
赵善辉
作者简介:
张思文(1987—),女,博士,讲师,zhangsiwen@njit.edu.cn
基金资助:
Siwen ZHANG(), Haiming GU, Shanhui ZHAO(
)
Received:
2024-09-02
Revised:
2024-10-24
Online:
2025-01-25
Published:
2025-02-08
Contact:
Shanhui ZHAO
摘要:
采用实验与分子模拟相结合的方法,对纳米氧化铁颗粒作用下的纤维素的化学链气化过程进行研究。热重实验结果表明,氧化铁能够加速纤维素的热分解,同时使得热失重速率峰值温度降低。分子动力学模拟结果表明纳米氧化铁颗粒的存在使得纤维素解聚温度降低,同时,氧化铁载氧体的原位供氧加强了焦油和焦炭的转化。当模拟温度达到3000 K时,固体焦炭完全转化,焦油和气体的产率分别为9.49%(质量分数)和91.28%(质量分数)。单组分产物结果表明,纳米氧化铁载氧体抑制了焦油的生成,同时促进了CO和H2O的生成。径向分布函数结果表明,高温下,纳米氧化铁颗粒中氧原子与铁原子容易发生分离,晶格氧倾向于向颗粒表面迁移,促进原位供氧。
中图分类号:
张思文, 顾海明, 赵善辉. 纳米氧化铁对纤维素化学链气化的分子反应机理[J]. 化工学报, 2025, 76(1): 363-373.
Siwen ZHANG, Haiming GU, Shanhui ZHAO. Molecular mechanism study on chemical looping gasification of cellulose over iron oxide nanocluster[J]. CIESC Journal, 2025, 76(1): 363-373.
1 | Hren R, Vujanović A, van Fan Y, et al. Hydrogen production, storage and transport for renewable energy and chemicals: an environmental footprint assessment[J]. Renewable and Sustainable Energy Reviews, 2023, 173: 113113. |
2 | Lee J, Kim S, You S M, et al. Bioenergy generation from thermochemical conversion of lignocellulosic biomass-based integrated renewable energy systems[J]. Renewable and Sustainable Energy Reviews, 2023, 178: 113240. |
3 | Kalak T. Potential use of industrial biomass waste as a sustainable energy source in the future[J]. Energies, 2023, 16(4): 1783. |
4 | 张会岩, 杨海平, 陆强, 等. 生物质定向热解制取高品质液体燃料、化学品和碳材料研究进展[J]. 工程热物理学报, 2021, 42(12): 3031-3044. |
Zhang H Y, Yang H P, Lu Q, et al. Progress of directional pyrolysis of biomass to produce high-quality liquid fuels, chemicals and carbon materials[J]. Journal of Engineering Thermophysics, 2021, 42(12): 3031-3044. | |
5 | Cortazar M, Santamaria L, Lopez G, et al. A comprehensive review of primary strategies for tar removal in biomass gasification[J]. Energy Conversion and Management, 2023, 276: 116496. |
6 | Faizan M, Song H. Critical review on catalytic biomass gasification: state-of-art progress, technical challenges, and perspectives in future development[J]. Journal of Cleaner Production, 2023, 408: 137224. |
7 | Nguyen N M, Alobaid F, Dieringer P, et al. Biomass-based chemical looping gasification: overview and recent developments[J]. Applied Sciences, 2021, 11(15): 7069. |
8 | 郭万军, 葛晖骏, 沈来宏, 等. 基于铁矿石载氧体25 kWth串行流化床生物质化学链气化实验研究[J]. 热科学与技术, 2017, 16(1): 78-86. |
Guo W J, Ge H J, Shen L H, et al. Experimental study on chemical looping gasification of biomass with hematite base on 25 kWth fluidized beds[J]. Journal of Thermal Science and Technology, 2017, 16(1): 78-86. | |
9 | Ge H J, Shen L H, Feng F, et al. Experiments on biomass gasification using chemical looping with nickel-based oxygen carrier in a 25 kWth reactor[J]. Applied Thermal Engineering, 2015, 85: 52-60. |
10 | Wang S, Wu F, Wang X D. Experimental and kinetics analysis on biomass chemical looping gasification using lean iron ore as oxygen carrier[J]. Chemical Engineering Journal, 2023, 474: 145855. |
11 | Zhen H, Wang Y H, Fang S W, et al. Chemical looping gasification of benzene as a biomass tar model compound using hematite modified by Ni as an oxygen carrier[J]. Applications in Energy and Combustion Science, 2023, 15: 100172. |
12 | Guan Y, Liu Y H, Wang B, et al. Reaction characteristics and lattice oxygen transformation mechanism of semi-coke chemical looping gasification with Fe2O3/CaSO4-Al2O3 oxygen carrier[J]. Journal of Cleaner Production, 2022, 369: 133291. |
13 | Sun R, Xiao Y, Yan J C, et al. Mechanism study on the high-performance BaFe2O4 during chemical looping gasification[J]. Fuel, 2022, 307: 121847. |
14 | Li Z Y, Dong X S, Yan B B, et al. Chemical looping gasification of digestate: investigation on the surface and lattice oxygen of perovskite oxygen carrier[J]. Fuel, 2022, 318: 123663. |
15 | Guo W Q, Wu J B, Meng L L, et al. Reactive behaviors and mechanisms of cellulose in chemical looping combustions with iron-based oxygen carriers: an experimental combined with ReaxFF MD study[J]. Applications in Energy and Combustion Science, 2023, 14: 100135. |
16 | Tang G Y, Gu J, Wei G Q, et al. Syngas production from cellulose solid waste by enhanced chemical looping gasification using Ca-Fe bimetallic oxygen carrier with porous structure[J]. Fuel, 2022, 322: 124106. |
17 | 钱琳, 赵南锦, 薛金凯, 等. 生物质焦油模化物的热裂解ReaxFF模拟研究[J]. 化学工程, 2024, 52(3): 66-71. |
Qian L, Zhao N J, Xue J K, et al. Simulation on thermal decomposition of biomass tar model compounds by ReaxFF[J]. Chemical Engineering(China), 2024, 52(3): 66-71. | |
18 | Chen J W, Wang C X, Shang W X, et al. Study on the mechanisms of hydrogen production from alkali lignin gasification in supercritical water by ReaxFF molecular dynamics simulation[J]. Energy, 2023, 278: 127900. |
19 | 郭文倩, 蒙亮亮, 耿畅, 等. 铁基载氧体纤维素化学链解聚试验及分子模拟[J]. 洁净煤技术, 2023, 29(4): 137-147. |
Guo W Q, Meng L L, Geng C, et al. Experiment and molecular simulation of cellulose during chemical looping depolymerization with iron-based oxygen carriers[J]. Clean Coal Technology, 2023, 29(4): 137-147. | |
20 | Senftle T P, Hong S, Islam M M, et al. The ReaxFF reactive force-field: development, applications and future directions[J]. NPJ Computational Materials, 2016, 2: 15011. |
21 | Duin A C, Dasgupta S, Lorant F, et al. ReaxFF: a reactive force field for hydrocarbons[J]. The Journal of Physical Chemistry A, 2001, 105(41): 9396-9409. |
22 | Sun C C. True density of microcrystalline cellulose[J]. Journal of Pharmaceutical Sciences, 2005, 94(10): 2132-2134. |
23 | Hu B, Zhang W M, Zhang B, et al. Role of glycosidic bond in initial cellulose pyrolysis: investigation by machine learning simulation[J]. Applications in Energy and Combustion Science, 2022, 9: 100055. |
24 | Zheng Y X, Hong S, Psofogiannakis G, et al. Modeling and in situ probing of surface reactions in atomic layer deposition[J]. ACS Applied Materials & Interfaces, 2017, 9(18): 15848-15856. |
25 | Plimpton S. Fast parallel algorithms for short-range molecular dynamics[J]. Journal of Computational Physics, 1995, 117(1): 1-19. |
26 | Dai G X, Wang K G, Wang G Y, et al. Initial pyrolysis mechanism of cellulose revealed by in situ DRIFT analysis and theoretical calculation[J]. Combustion and Flame, 2019, 208: 273-280. |
27 | Zhao S H, Luo Y H, Zhang Y L, et al. Experimental investigation of rice straw and model compounds oxidative pyrolysis by in-situ DRIFT and coupled TG-DSC/MS method[J]. Energy Fuels, 2015, 29(7): 4361-4372. |
28 | Tang G Y, Gu J, Huang Z, et al. Cellulose gasification with Ca-Fe oxygen carrier in chemical-looping process[J]. Energy, 2022, 239: 122204. |
29 | Hong D K, Cao Z, Guo X. Effect of calcium on the secondary reactions of tar from Zhundong coal pyrolysis: a molecular dynamics simulation using ReaxFF[J]. Journal of Analytical and Applied Pyrolysis, 2019, 137: 246-252. |
30 | Khanh B T H L, Hoang V V, Zung H. Structural properties of amorphous Fe2O3 nanoparticles[J]. The European Physical Journal D, 2008, 49(3): 325-332. |
31 | Cheng Q, Conejo A N, Wang Y Z, et al. Adsorption properties of hydrogen with iron oxides (FeO, Fe2O3): a ReaxFF molecular dynamics study[J]. Computational Materials Science, 2023, 218: 111926. |
32 | Wu Z Q, Zhang B, Wu S, et al. Chemical looping gasification of lignocellulosic biomass with iron-based oxygen carrier: products distribution and kinetic analysis on gaseous products from cellulose[J]. Fuel Processing Technology, 2019, 193: 361-371. |
33 | Simmons G M, Gentry M. Kinetic formation of CO, CO2, H2, and light hydrocarbon gases from cellulose pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 1986, 10(2): 129-138. |
34 | Liu C, Huang J B, Huang X L, et al. Theoretical studies on formation mechanisms of CO and CO2 in cellulose pyrolysis[J]. Computational and Theoretical Chemistry, 2011, 964(1/2/3): 207-212. |
35 | 张金鹏, 王强, 王艳美, 等. 镍基载氧体化学链燃烧过程中宁夏QH和YCW煤分子结构演化特征及对比分析[J]. 化工学报, 2023, 74(10): 4252-4266. |
Zhang J P, Wang Q, Wang Y M, et al. Molecular structure evolution characteristics and comparative analysis of Ningxia QH and YCW coal with nickel based oxygen carriers during chemical looping combustion[J]. CIESC Journal, 2023, 74(10): 4252-4266. | |
36 | Banyasz J L, Li S, Lyons-Hart J, et al. Gas evolution and the mechanism of cellulose pyrolysis[J]. Fuel, 2001, 80(12): 1757-1763. |
37 | Maduskar S, Maliekkal V, Neurock M, et al. On the yield of levoglucosan from cellulose pyrolysis[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(5): 7017-7025. |
38 | Zhang X L, Yang W H, Dong C Q. Levoglucosan formation mechanisms during cellulose pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2013, 104: 19-27. |
39 | Xu J H, Zhu L Y. Molecular mechanism study of the kinetics and product yields during copyrolysis of biomass and solid wastes: ReaxFF-MD method approach[J]. ACS Omega, 2023, 8(39): 36126-36135. |
40 | 何笑, 刘晶晶, 李文瑶, 等. 玉米秸秆化学链热解过程铁基复合载氧体的载氧-催化性能[J]. 化工学报, 2023, 74(10): 4153-4163. |
He X, Liu J J, Li W Y, et al. Oxygen-carrying and catalytic properties of iron-based composite oxygen carrier for chemical looping pyrolysis of corn stalk[J]. CIESC Journal, 2023, 74(10): 4153-4163. |
[1] | 邹吉军, 刘宝宏, 史成香, 潘伦, 张香文. 综纤维素衍生物转化合成生物航空燃料的非均相催化剂研究进展[J]. 化工学报, 2025, 76(1): 1-17. |
[2] | 王新月, 徐小虎, 张海洋, 尹春华. 维生素A醋酸酯/环糊精包合及性质研究[J]. 化工学报, 2024, 75(S1): 321-328. |
[3] | 孙娜娜, 董红妹, 郭文豪, 柳健, 胡建波, 靳爽. 改性磁性纳米粒子稳定的稠油O/W型乳状液的流变性影响因素及管输压降预测模型[J]. 化工学报, 2024, 75(S1): 143-157. |
[4] | 赵武灵, 满奕. 基于变分编码器的纳米纤维素分子结构预测模型框架研究[J]. 化工学报, 2024, 75(9): 3221-3230. |
[5] | 曹佳蕾, 孙立岩, 曾德望, 尹凡, 高子翔, 肖睿. 双流化床化学链制氢反应器的数值模拟[J]. 化工学报, 2024, 75(8): 2865-2874. |
[6] | 童永祺, 程杰, 林海, 陈曦, 赵海波. 10 MWth化学链燃烧反应装置的CPFD模拟[J]. 化工学报, 2024, 75(8): 2949-2959. |
[7] | 赵帅琪, 张瑞, 黄瀚, 赵昆鹏, 白博峰. 水气转化对超临界水煤气化的抑制特性[J]. 化工学报, 2024, 75(8): 2960-2969. |
[8] | 吴哲明, 张碧云, 郑仁朝. 腈水解酶立体选择性改造及其合成布瓦西坦[J]. 化工学报, 2024, 75(7): 2633-2643. |
[9] | 王文雅, 张玮, 楼小玲, 钟若菲, 陈冰冰, 贠军贤. 纳米纤维素嵌合型晶胶微球的多微管成形与模拟[J]. 化工学报, 2024, 75(5): 2060-2071. |
[10] | 张文焱, 刘浩, 宋伟龙, 赵频, 王新华. 不同粒径UiO-66混掺改性TFN-FO膜的构建及性能评价[J]. 化工学报, 2024, 75(5): 1920-1928. |
[11] | 秦晗淞, 李国梁, 闫昊, 冯翔, 刘熠斌, 陈小博, 杨朝合. 多级孔ZSM-5分子筛中油酸甲酯催化裂解吸附和扩散行为模拟研究[J]. 化工学报, 2024, 75(5): 1870-1881. |
[12] | 刘东飞, 张帆, 刘铮, 卢滇楠. 机器学习势及其在分子模拟中的应用综述[J]. 化工学报, 2024, 75(4): 1241-1255. |
[13] | 张政, 汪妩琼, 张雅静, 王康军, 吉远辉. 理论计算在药物制剂设计中的研究进展[J]. 化工学报, 2024, 75(4): 1429-1438. |
[14] | 申州洋, 薛康, 刘青, 史成香, 邹吉军, 张香文, 潘伦. 吸热型纳米流体燃料研究进展[J]. 化工学报, 2024, 75(4): 1167-1182. |
[15] | 周康, 王建新, 于海, 魏朝良, 范丰奇, 车昕昊, 张磊. 基于分子动力学模拟的矿物基础油泡沫破裂性能研究[J]. 化工学报, 2024, 75(4): 1668-1678. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 289
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 117
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||